N° d'ordre

THESE
présentée devant

L'UNIVERSITE PAUL SABATIER DE TOULOUSE (SCIENCES)
en vue de l'obtention

du DOCTORAT DE L'UNIVERSITE PAUL SABATIER
spécialité : GEOLOGIE SEDIMENTAIRE

par

François BRUNEL

ETUDE STRATIGRAPHIQUE ET PALEONTOLOGIQUE
DU LIAS MOYEN
DU QUERCY SEPTENTRIONAL

soutenue le 26 Octobre 1996 devant la commission d'examen composée de :

Joseph CANEROT
Professeur à l'Université Paul Sabatier, Toulouse

Elie CARIOU
Professeur à l'Université de Poitiers

Rogério BORDALO DA ROCHA
Professeur à l'Université de Lisbonne

René CUBAYNES
Professeur agrégé, Docteur d'Etat

René MOUTERDE
Directeur de Recherche honoraire CNRS

Jacques REY
Professeur à l'Université Paul Sabatier, Toulouse

Christiane RUGET
Chargée de Recherche CNRS, Facultés catholiques de Lyon

Président
Rapporteur
Rapporteur
Examinateur
Examinateur
Examinateur
Résumé

Plusieurs coupes stratigraphiques ont été levées dans le Lias moyen du Quercy septentrional (Bassin d'Aquitaine), entre les régions de Saint-Céré, à l'Est, de Gramat, au Sud, et de Terrasson, à l'Ouest. Les analyses stratigraphiques, sédimentologiques (figures et structures sédimentaires, micropétrographie), paléontologiques, minéralogiques, géochimiques et palynologiques, consacrées à la série calcaire et marneuse de la coupe-type de Loubressac-Lapoujade, ont permis d'établir une évolution dans le temps des paléoenvironnements successifs, sur une plate-forme carbonatée, depuis un domaine circalittoral, jusqu'à des milieux de barres tidales. Grâce aux corrélations établies avec les coupes annexes, nous pouvons proposer une variation spatiale de ces mêmes paléoenvironnements (approfondissement général vers le Sud-Ouest), ainsi qu'un découpage de la série en termes de stratigraphie séquentielle. Trois séquences de dépôts et neuf cortèges sédimentaires, datés précisément à l'échelle de la zone ou de la sous-zone d'ammonites, ont été reconnus dans la partie moyenne et supérieure du Domérien : la séquence PL 4 (rapportée à la zone à Margaritatus), la séquence PL 5 (dont l'intervalle transgressif appartient à la zone à Margaritatus, sous-zone à Gibbosus) et la séquence PL 6 (elle aussi datée par son intervalle transgressif de la zone à Spinatum, sous-zone à Hawskerense). Ces résultats ont permis de mettre en évidence une corrélation parfaite avec les mêmes unités de dépôt dans le Quercy méridional (région de la Grésigne). L'identification des cortèges sédimentaires, à l'échelle du troisième ordre, et des discontinuités qui les séparent, a pu être obtenue par l'utilisation conjointe de diverses méthodes disponibles en stratigraphie, donc par une démarche de Stratigraphie intégrée. Ce travail a confirmé en particulier l'intérêt de l'étude micropaléontologique des associations de foraminifères benthiques (méthodes quantitatives et qualitatives) pour la reconnaissance des cortèges sédimentaires dans les séries marneuses homogènes.
Abstract

Several stratigraphic sections were measured in the middle Liassic of the northern Quercy (Aquitaine Basin) between the regions of Saint-Céré in the East, of Gramat in the South and Terrasson in the West. The stratigraphic, sedimentologic (sedimentary structures and figures, micropetrography), paleontologic, mineralologic, geochemical and palynologic analyses of the calcareous and marly series of the type section of Loubressac-Lapoujade, reveal an evolution in time of the successive paleoenvironments. In this carbonate platform environment, they range up from an outer shelf domain, up to a tidal bar system. Thanks to correlations established with nearby sections, we can propose a lateral variation of these same paleoenvironments (a general deepening to the South-West), as well as a subdivision of the series in terms of sequence stratigraphy. Three depositional sequences and nine systems tracts, precisely dated at the scale of ammonite zones and subzones, have been recognized in the middle and upper part of the Domerian: the PL 4 sequence (Margaritatus zone), the PL 5 sequence (of which the transgressive systems tracts belongs to the Gibbosus subzone of the Margaritatus zone) and the PL 6 sequence (also dated by means of its transgressive systems tracts as Hawskerense subzone, Spinatum zone). These results allow a perfect correlation with the same depositional units in the Southern Quercy (Grésigne area). The identification of the systems tracts of third order scale, and the sedimentary unconformities that separate them, was obtained by the joint used of diverse stratigraphic methods, otherwise said by an integrated stratigraphic approach. This work confirms in particular the interest of the micropaleontologic study of benthic foraminiferal associations (quantitative and qualitative methods) for the recognition of sedimentary sequences in homogeneous marly series.
SOMMAIRE

CHAPITRE I INTRODUCTION p. 13

I 1 Cadre géographique et géologique général
I 2 Cadre géographique et géologique du secteur d'étude
I 3 Cadre structural et déformations tectoniques
I 4 Historique
 I 4 1 Travaux réalisés dans la région d'étude
 I 4 2 Travaux réalisés dans le secteur d'étude
I 5 Objectifs de la thèse
I 6 Méthodes d'étude
I 7 Lithostratigraphie et chronologie du Lias

CHAPITRE II LITHOSTRATIGRAPHIE ET BIOSTRATIGRAPHIE p. 27

II 1 Introduction
 II 1 1 Plan de l'étude
 II 1 2 Situation géographique des coupes

II 2 La coupe type : Loubressac-Lapoujade
 II 2 1 Description de la coupe
 II 2 2 Les unités lithostratigraphiques
 II 2 3 Les données biostratigraphiques
 II 2 3 1 Macropaléontologie
 II 2 3 2 Micropaléontologie (uniquement marqueurs)
 II 2 4 Les discontinuités sédimentaires
II 3 Les coupes annexes
 II 3 1 La Formation de VALEYRES
 II 3 1 1 Le Membre des Argilites grises
 II 3 1 2 Le Membre de RIEUZAL
 II 3 1 3 Le Membre de LAPOUJADE
 II 3 2 La Formation de la BARRE à PECTEN

II 4 Corrélations stratigraphiques
 II 4 1 Arguments de corrélations biostratigraphiques
 II 4 2 Épaisseurs des unités lithostratigraphiques
 II 4 3 Corrélations et comparaison avec la Grésigne

CHAPITRE III LES PALEO-ENVIRONNEMENTS :
Variations dans l'espace et évolution dans le temps

III 1 Introduction
 III 1 1 Objectifs
 III 1 2 Méthodes

III 2 La coupe type : Loubressac-Lapoujade
 III 2 1 La Formation de VALEYRES
 III 2 1 1 Le Membre des Argilites grises
 A/ Données sédimentologiques
 a - Figures et structures sédimentaires
 b - Micropétrographie
 B/ Données minérallogiques
 a - Argiles
 b - Quartz
 c - Goethite
 C/ Données géochimiques
 D/ Données palynologiques
 E/ Données micropaléontologiques
 a - Ostracodes
 b - Foraminifères benthiques
 III 2 1 2 Le Membre de RIEUZAL
 III 2 1 3 Le Membre de LAPOUJADE

III 2 2 La Formation de la BARRE à PECTEN
III 2 3 Analyse en Composantes Principales des données de la minéralogie des argiles

III 3 Les coupes annexes

III 4 Synthèse conclusion
 III 4 1 Paléogéographie
 III 4 2 Interprétation préliminaire en termes de stratigraphie séquentielle
 III 4 3 Limites et problèmes

CHAPITRE IV ETUDE MICROPALAEOONTOLOGIQUE p. 149

IV 1 Objectifs et méthodes

IV 2 Micropaléontologie et stratigraphie séquentielle
 IV 2 1 Distribution des peuplements
 -Tableau de répartition de la microfaune
 -Comptage : foraminifères et ostracodes

 IV 2 2 Analyses statistiques
 IV 2 2 1 Nombre de taxons
 IV 2 2 2 Taux de renouvellement
 IV 2 2 3 ACM
 IV 2 2 4 AFD

 IV 2 3 Contenu micropaléontologique des cortèges sédimentaires

CHAPITRE V LES SEQUENCES DE DEPOTS DU DOMERIEN DU QUERCY SEPTENTRIONAL p. 227

V 1 Séquences de dépôts, cortèges sédimentaires et discontinuités
 V 1 1 Séquence PL 4
 V 1 2 Séquence PL 5
 V 1 3 Séquence PL 6

V 2 Caractères généraux des cortèges et surfaces
V 3 Calage biostratigraphique

V 4 Organisation géométrique des dépôts et paléotopographie

V 5 Comparaison avec le Quercy méridional

CHAPITRE VI CONCLUSIONS GÉNÉRALES p. 243

VI 1 Apports sur le Domérien du Quercy septentrional

VI 2 Méthodes d'identification et caractérisation des cortèges sédimentaires et des séquences de dépôt

Table des illustrations p. 249

Références bibliographiques p. 253

Planches photographiques p. 261
CHAPITRE 1
INTRODUCTION
CHAPITRE I : INTRODUCTION

I. 1. CADRE GEOGRAPHIQUE ET GEOLOGIQUE GENERAL

I. 2. CADRE GEOGRAPHIQUE ET GEOLOGIQUE DU SECTEUR D'ETUDE

I. 3. HISTORIQUE
1. 3. 1. Travaux réalisés dans la région d'étude
1. 3. 2. Travaux réalisés dans le secteur d'étude

I. 4. OBJECTIFS DE LA THESE

I. 5. METHODES D'ETUDE

I. 6. LITHOSTRATIGRAPHIE ET CHRONOLOGIE DU LIAS
I. 1. CADRE GEOGRAPHIQUE ET GEOLOGIQUE GENERAL

Situé à l'est de la plate-forme nord-aquitaine, le Quercy correspond à un vaste ensemble d'affleurements jurassiques de forme triangulaire (Fig. 1 et 2), long de 120 à 130 km et large de 10 à 80 km au maximum. Il est limité à l'Ouest par le linéament ouest-quercynois, d'orientation N 140 E, et à l'Est par différentes failles bordières du Massif central (terrains métamorphiques et plutoniques):
- au Sud-Est, la faille de Villefranche-de-Rouergue orientée N 20 E;
- au Nord-Est, un faisceau d'accidents d'orientation générale NW-SE (failles d'Argentat et de Cornac).

Au Sud, l'anticlinal de la Grésigne se situe au point de jonction du linéament ouest-quercynois et de la faille de Villefranche-de-Rouergue. Le chevauchement sud-grésignol marque la limite entre les formations jurassiques du Quercy et les terrains tertiaires de l'Albigeois.

Au Nord, la faille de Condat-Meyssac sépare le bassin quercynois du bassin permien de Brive-la-Gaillarde.

Sur la bordure orientale de ce bassin, les terrains stéphaniens, permiens ou triasiques, affleurent episodiquement du Nord au Sud (dôme de la Grésigne, de Villeveyres, région de Lacapelle-Marival et de Beaulieu sur Dordogne...). En se déplaçant vers l'Ouest, les formations du Liass ("dépression liasique d'avant-causses") et du Dogger ("Causses du Quercy"), sont disposées en de minces bandes d'orientation méridienne. Ces dépôts, en grande majorité carbonatés, ont un faible pendage de 2 à 3 %, vers l'Ouest ou le Sud-Ouest (Fig. 2).

L'érosion fluviale des rivières Vézère, Dordogne, Lot et Aveyron, permet de délimiter du Nord au Sud, les Causses de Martel, de Gramat, de Limogne (Fig. 1).

Le modèle morpho-structural au Liass moyen et supérieur, proposé par Cubaynes (1986) pour l'extrémité sud du Bassin quercynois, nous montre que le Quercy méridional s'effondre progressivement du Nord au Sud, pour atteindre son maximum de profondeur dans la région de la Grésigne. Ce phénomène est lié au basculement de blocs successifs, suivant des failles d'orientation N 90 E. Il est limité à l'Est et à l'Ouest par deux zones hautes, le seuil de Rouergue et le haut-fond de Castelsarrasin-Montauban, générés
Figure 1 :
Cadre géographique du Quercy
respectivement par la faille de Villefranche-de-Rouergue et le linéament ouest-quercynois, et au Nord par le haut-fond de Figeac-Capdenac. Notre travail montrera si le Quercy septentrional présente un dispositif morphostructural identique ou différent de celui observé dans le Quercy méridional (CfII).

I. 2. CADRE GÉOGRAPHIQUE ET GÉOLOGIQUE DU SÉCTEUR D'ÉTUDE

L'essentiel de mes recherches a porté sur le Lias du Quercy septentrional au Nord du département du Lot, dans les Causses de Martel et de Gramat, et la Vallée de la Dordogne (Fig. 1 et 3). Plusieurs coupes ont aussi été levées dans les départements de la Corrèze (région de Turenne), et de la Dordogne (environ de Terrasson).

Le secteur d'étude (Fig. 3) est donc situé de part et d'autre d'un axe allant de Terrasson, au Nord-Ouest, jusqu'à St Céré, au Sud-Est.

D'un point de vue géomorphologique, les terrains jurassiques sont de deux types (Fig. 2):
- la dépression liasique, communément appelé "le Limargue". C'est l'équivalent septentrional de la dépression de Terrefort;
- les Causses de Martel et de Gramat, à relief karstique (dolines, vallées sèches, gouffres...). Les vallées creusées par la Dordogne et ses affluents, dégagent au bas des versants, la série domérienne.

Ainsi, la coupe-type du Lias, observable sur la rive gauche de la Dordogne nous montre, de bas en haut, la succession lithologique et morphologique suivante :
- les dépôts calcaires du Sinémérien et du Lotharingien;
- l'alternance de marnes et calcaires du Carixien qui débute un replat herbeux;
- les marnes fines du Domérien inférieur, elles aussi recouvertes par la végétation;
- un premier abrupt calcaire représentant la partie moyenne et supérieure du Domérien;
- une deuxième vire marneuse du Toarcien inférieur et moyen;
- enfin une falaise d'une cinquantaine de mètres d'épaisseur, correspondant aux unités calcaires du Toarcien supérieur et de l'Aalénien.

D'un point de vue structural, plusieurs accidents d'orientation générale N 90 E (failles de Condat-Meyssac, de Queyssac, de Padirac, d'Alvignac et de Flaujac), découvrent les terrains du Lias et du Dogger et délimitent différents compartiments. L'essentiel des coupes a été levé dans ceux de Martel (entre les failles de Condat-Meyssac, au Nord, et de
Figure 2 : Cadre géologique et structural du bassin quercynois

Échelle : 1/1 000 000

Colluvions
Terrains sédimentaires
- Post Jurassique indifférencié
- Malm
- Dogger
- Lias
- Ante Lias

Terrains métamorphiques et plutoniques
- Hercynien

Failles
1. Faille de Condat-Meyssac
2. Faille de Lissac
3. Linéament ouest-quercynois
4. Faille d'Argentat
5. Faille de Cornac
6. Faille de Padirac
7. Faille de Flaujac
8. Faille de Villefranche-de-Rouergue
Figure 3 :
Cadre géologique et structural
du secteur d'étude
Padirac, au Sud) et d'Alvignac (entre les failles de Padirac, au Nord, et d'Alvignac, au Sud). Une autre coupe a été levée à l'ouest de la faille de Lissac d'orientation Nord-Sud. Cette dernière semble avoir joué un rôle tectonique important au même titre que celles précédemment citées.

I. 3. HISTORIQUE DES TRAVAUX

I. 3.1. Travaux réalisés dans la région d'étude

Seuls seront cités les principaux auteurs dont les recherches ont porté sur le Lias quercynois.

Les terrains liasiques sont étudiés pour la première fois par Magnan, en 1869. Il décrit trois termes lithologiquement différents correspondant aux unités actuellement rapportées au Carixien, au Domérien et à la base du Toarcien.

Caraven-Cachin, en 1898, reconnaît quatre formations dans le Lias moyen, dans les départements du Tarn et du Tarn-et-Garonne.

Thevenin, en 1903, synthétise ces travaux et découvre les ammonites qui distinguent quatre des six zones du Pliensbachien (Carixien et Domérien) sur la bordure sud-ouest du Massif central.

Les travaux de Gèze, Durand-Delga et Cavaillé (1947), seront repris en 1971 par Fabre qui place la limite Carixien-Domérien, dans le massif de la Grésigne, entre les "calcaires en rangs de pavés" et les marnes sus-jacentes.

En 1986, Cubaynes présente dans sa thèse d'état, une description très minutieuse du Lias du Quercy méridional. Tous les membres et formations y sont clairement décrits et définis pour cet intervalle de temps. Les concepts séquentiels qu'il utilise (inspirés de Delfaud 1972, 1975, 1980) lui permettent de montrer grâce aux données lithologiques, sédimentologiques, biostratigraphiques et paléoécologiques, que le Lias correspond à une mégaséquence d'ouverture. Il divise cette dernière en quatre séquences notées L1 à L4 :

- les séquences L1 et L2 s'étendant du Rhéto-Trias jusqu'au hard-ground fini-Lotharingien, montrent une sédimentation calcaréo-dolomitique de plate-forme proximale;
les séquences L3 et L4 du Pliensbachien et du Toarcien, une sédimentation calcaréomarnreuse de plate-forme distale. Il propose pour le Domérien, qui représente la deuxième moitié de la séquence L3, une évolution cyclique des paléoenvironnements (infraîlitoral -> circalitoral -> infralittoral), avec une profondeur maximale des dépôts au milieu des "Marnes de Valeyres".

Depuis la fin des années 80, l'utilisation de nouveaux concepts stratigraphiques a permis à Rey et al. (1988), puis à Cubaynes et al. (1989a) d'établir en Grésigne, une première interprétation des successions des environnements, en termes de stratigraphie séquentielle (Vail et al., 1987).

Le découpage de la série liasique en séquences de dépôt de 3ème ordre ainsi obtenu a ensuite été précisé et complété par l'utilisation de la microfaune benthique. En effet dans les séries marnreuses à lithologie homogène du Domérien et du Toarcien, les cortèges sédimentaires peuvent être caractérisés par les associations de foraminifères benthiques (Cubaynes et al., 1985, 1989b, 1990a, 1991), ou d'ostracodes (Cubaynes et al., 1990b; Boderget et al., 1991; Rey et al., 1992).

Les résultats de ces travaux ont été confirmés et améliorés par des analyses statistiques menées, soit sur les biocénoses de foraminifères benthiques (Bonnet et al., 1992b), soit sur celles des ostracodes (Bonnet et al., 1992a).

Grâce à l'utilisation conjointe de ces différentes méthodes d'étude, j'ai contribué dans le cadre d'un D.E.A. (Brunel, 1992) à l'affinage du découpage en cortèges sédimentaires du Lias moyen et supérieur du Quercy méridional (Cubaynes et al., 1995).

I. 3. 2. Travaux réalisés dans le secteur d'étude

De 1879 à 1899, Mouret effectue les premiers travaux d'explorations et de tracés géologiques pour l'établissement des deux premières éditions de la carte géologique de Brive-la-Gaillarde à 1/80 000 (Mouret, 1879, 1899). Celle-ci sera révisée par Gèze pour sa troisième édition en 1968.

En 1954, Gèze synthétise et complète les travaux antérieurs de Mouret, Glangeaud (1895), Fournier (1900), Thévenin (1903). Il établit ainsi un schéma général de la tectonique du Quercy et propose une hiérarchisation des accidents, dans une région s'étendant de Terrasson, au Nord, jusqu'au dôme de la Grésigne, au Sud.

En 1961, lors du Colloque sur le Lias français, Séronie-Vivien et al. rendent compte de leurs recherches menées sur les bordures orientale et septentrionale du Bassin d'Aquitaine. Les auteurs dressent dans cette note un inventaire et une répartition géographique des microfaciès et de la microfaune du Lias (en particulier pour les sites de Loubressac, Carennac et Alvincare).
Depuis les années 70, de nombreux travaux de terrain ont été effectués dans le Quercy septentrional et le Périgord oriental, pour la réalisation des cartes géologiques à 1/50 000 de:
- Juillac (feuille : Guillot et al., 1977; notice : Guillot et al., 1978);
- Terrasson (feuille : Feys et al., 1979; notice : Guillot et al., 1979);
- Brive-la-Gaillarde (feuille : Lefavrais-Raymond et al., 1976; notice : Boissonnas et al., 1976);
- St Céré (feuille : Guillot et al., 1992; notice : Guillot et al., 1992);
- Souillac (feuille : Astruc et al., sous-presse; notice : Astruc et al., sous-presse).

Le Domérien de la coupe de Loubressac a été à nouveau étudié, en 1982 par Mégelein-Assenat, puis en 1988, par De Vains qui y réalise une analyse palynologique et compare ses données avec les résultats sur les spores et pollens du Lias d'autres régions d'Europe.

Enfin en 1993, Qajoun présente dans sa thèse de l'Université Paul Sabatier, une étude biostratigraphique et micropaléontologique du Toarcien du Quercy septentrional. Il met en évidence grâce aux critères sédimentologiques et par l'utilisation des analyses statistiques menées sur les biocénoses de foraminifères et d'ostracodes, huit séquences de dépôts. Leurs cortèges précisément datés par des ammonites ont été corrélatés avec les systèmes de dépôts équivalents du Quercy méridional.

I. 4. OBJECTIFS DE LA THESE

Les recherches menées depuis quelques années au Laboratoire de Stratigraphie séquentielle et Micropaléontologie sur le Toarcien du Quercy ont montré une étroite relation entre les associations de foraminifères benthiques et les cortèges sédimentaires et séquences de dépôt de 3ème ordre.

Dans la continuité de ces recherches, j'ai entrepris l'étude du Domérien du Quercy septentrional. Les objectifs qui m'ont été assignés pour cette thèse sont fondés sur des analyses de trois ordres :
- en premier lieu réaliser une étude biostratigraphique précise des différentes unités lithologiques (datation par des ammonites à l'échelle de la sous-zone), afin d'obtenir le calage et les corrélations stratigraphiques les plus fiables possibles;
deuxièmement, procéder à une étude sédimentologique fine, en particulier au niveau des surfaces remarquables (discontinuités sédimentaires) et pour les ensembles calcaires (Cf. I 7, Membre de Rieuzaal), afin de reconstituer divers paléoenvironnements et leurs enchaînements dans l'espace et dans le temps;

- enfin, effectuer une étude détaillée du contenu micropaléontologique des séries marneuses :
 . recensement des faunes pour obtenir des tableaux de répartition stratigraphique et paléogéographique des micro-organismes (foraminifères et ostracodes);
 . traitements statistiques contribuant à l'identification des divers types d'associations micropaléontologiques.

Les données biostratigraphiques, sédimentologiques et micropaléontologiques collectées, nous permettrons d'appliquer les concepts de la stratigraphie séquentielle aux dépôts domériens pour identifier les séquences de dépôt de 3ème ordre et déterminer la composition et l'agencement, dans l'espace et dans le temps, des divers cortèges sédimentaires. Nous nous attacherons à reconstituer la morphologie de cette partie du bassin quercynois et à évaluer l'influence des variations du niveau marin relatif sur les peuplements micropaléontologiques benthiques, puis à faire la part des contrôles eustatiques et tectoniques sur les évolutions sédimentaires observées.

I. 5. MÉTHODES D'ÉTUDE

Seules seront citées ici, les grandes lignes des méthodes inhérentes à toutes études stratigraphiques. La description spécifique des démarches mises en œuvre pour atteindre les objectifs exposés précédemment sera développée en tête des différents chapitres.

De toute évidence, que les analyses ultérieures soient pratiques ou théoriques, cette étude requiert prioritairement, un long et rigoureux travail sur le terrain. En effet, la reconnaissance des successions lithologiques et l'obtention d'un cadre chronostratigraphique précis imposent un examen détaillé et surtout continu des coupes observées. Ceci se traduit par :

- une recherche systématique des faunes d'ammonites (datation);
- l'étude de la stratonomie et des figures sédimentaires;
- l'identification des discontinuités sédimentaires, condensations de faune ou changements sédimentologiques;
- un échantillonnage le plus serré possible.

Pour la coupe de LOUBRESSAC-LAPOUJADE (qui a été retenue comme coupe de référence), l'échantillonnage a été effectué tous les cinquante centimètres dans les séries
marneuses et pour tous les bancs calcaires et interbancs marneux dans les séries à
dominante calcaire. 104 échantillons ont été récoltés pour la quarantaine de mètre
d'épaisseur de cette coupe. Ceux-ci doivent être assez conséquents (2 kg en moyenne), car
toutes les analyses postérieures seront réalisées à partir de la même collecte;

Au niveau des autres coupes, nous avons prélevé tous les cinquante centimètres dans les
marnes et banc par banc dans les ensembles calcaires.

Une étude micropétrographique a été réalisée sur des lames minces taillées
parallèlement à la stratification pour tous les échantillons calcaires des différentes coupes.
Les données paléontologiques et sédimentologiques ainsi obtenus ont permis d'élaborer un
modèle préliminaire de corrélations des coupes du Quercy septentrional.

Ce schéma a été affiné et complété par des études minéralogiques, géochimiques et
palynologiques de la coupe-type de Loubressac-Lapoujade. Ces travaux ont été
respectivement réalisé par le Professeur J. F. Deconinck (Université de Lille), par L.
Emmanuel (Université de Bourgogne) et G. Lachkar (Université de Paris VI). Il en est
résulté une reconstitution des évolutions temporelles et spatiales des environnements
permettant d'élaborer un premier découpage en termes de stratigraphie séquentielle et de
tracer le cadre paléogéographique du Quercy septentrional.

En ce qui concerne l'étude micropaléontologique, les prélèvements marneux ont été
lavés, leurs résidus triés et les formes dégagées (ostracodes et foraminifères) déterminées et
comptées. Les analyses statistiques fondées sur les tableaux de présence/absence des
foraminifères par niveaux de prélèvements et leurs comptages et fréquences relatives au
niveau générique compléteront et préciseront la première interprétation séquentielle.

Ces différents résultats seront ensuite confrontés à ceux obtenus dans le Quercy
méridional pour établir, à l'échelle du bassin quercynois, un schéma de corrélations
biostratigraphiques et génétiques et un tableau de répartition de la microfaune en fonction
des cortèges sédimentaires.

I. 6. Lithostratigraphie et Chronologie du Lias

L'étude du Lias du Quercy méridional a permis de définir un certain nombre d'unités
lithostratigraphiques et de les dater avec précision (Cubaynes, 1986). Mes recherches sur le
Quercy septentrional, effectuées dans le prolongement de ce travail, reprennent la même
trame stratigraphique et chronologique, le cas échéant complétée et précisée.

Le Domérien est représenté par deux formations qui sont dans l'ordre stratigraphique :
la Formation de Valeyres (Cubaynes, 1986) et la Formation de la Barre à Pecten (Cubaynes
Figure 4 :
Lithostratigraphie, Biostratigraphie et Chronologie
du Lias moyen et supérieur du Quercy
(d'après Fauré, 1983 et Gradstein, 1994).

-25-
Dans le Quercy septentrional, la Formation de Valeyres (zone à Margaritatus, base de la zone à Spinatum) se décompose en trois membres, soit de la base au sommet (Fig. 4):

- le Membre des Argiles grises, correspondant à la sous-zone à Stokesi. En raison des mauvaises conditions d'affleurements (éboulis de pente recouverts par la végétation), seules son extrême base (coupe de St Michel-de-Bannières) et sa partie supérieure ont pu être étudiées. Ces dépôts marneux se caractérisent ici (en comparaison avec le Quercy méridional) par la présence de bancs centimétriques à décimétriques de calcaires gréseux;

- le Membre de Rieuval (Astruc et al., sous presse), ensemble carbonaté massif et rougeâtre, présentant des stratifications particulières différentes d'un affleurement à l'autre. La puissance de ce membre peut varier de 6 à 8 mètres, dans la région de Castelnau, à quelques décimètres, à Turenne plus au Nord. Il est daté de la zone à Margaritatus;

- le Membre de Lapoujade (Brunel et al., 1995), intervalle marneux compris entre les unités calcaires de Rieuval et de la Barre à Pecten. Son épaisseur reste à peu près constante (6 à 8 mètres). Il s'étend du sommet de la zone à Margaritatus (sous-zone à Gibbosus) jusqu'à la base de la zone à Spinatum.

Ces deux derniers ensembles lithologiques semblent représenter l'équivalent du Membre des Marnes à taphoséquences de pente (Cubaynes, 1986) du Quercy méridional.

La Formation de la Barre à Pecten est un ensemble à dominante calcaire d'une vingtaine de mètres d'épaisseur, à pectinidés, bélémmites et localement brachiopodes. Les bancs de calcaires sont décimétriques, de couleur gris ou ocre, et souvent très bioclastiques. La "Barre à Pecten" est essentiellement datée de la zone à Spinatum et intègre le tout premier niveau du Toarcien (zone à Tenuicostatum, sous-zone à Paltus).

En résumé, l'ensemble des coupes étudiées couvre un intervalle de temps compris entre l'horizon à Figulinum (Carixien terminal) et la sous-zone à Semicelatum (Toarcien basal), mais avec une lacune d'observation relevant de la sous-zone à Stokesi et certainement de la partie inférieure de la sous-zone à Subnodosus.
CHAPITRE II

LITHOSTRATIGRAPHIE

ET

BIOSTRATIGRAPHIE
CHAPITRE II : LITHOSTRATIGRAPHIE ET BIOSTRATIGRAPHIE

II. 1. INTRODUCTION
 II. 1. 1. Plan de l'étude
 II. 1. 2. Situation géographique des coupes

II. 2. LA COUPE TYPE : LOUBRESSAC-LAPOUJADE
 II. 2. 1. Description de la coupe
 II. 2. 2. Les unités lithostratigraphiques
 II. 2. 3. Les données biostratigraphiques
 II. 2. 3. 1. Macropaléontologie
 II. 2. 3. 2. Micropaléontologie (uniquement marqueurs)
 II. 2. 4. Les discontinuités sédimentaires

II. 3. LES COUPES ANNEXES
 II. 3. 1. La Formation de VALEYRES
 II. 3. 1. 1. Le Membre des Argilites grises
 II. 3. 1. 2. Le Membre de RIEUZAL
 II. 3. 1. 3. Le Membre de LAPOUJADE
 II. 3. 2. La Formation de la BARRE à PECTEN

II. 4. CORRELATIONS STRATIGRAPHIQUES
 II. 4. 1. Arguments de correlations biostratigraphiques
 II. 4. 2. Discontinuités sédimentaires
 II. 4. 3. Epaisseurs des unités lithostratigraphiques
 II. 4. 4. Corrélations et comparaison avec le Quercy méridional
CHAPITRE II : LITHOSTRATIGRAPHIE ET BIOSTRATIGRAPHIE

II. 1. INTRODUCTION

II. 1. 1. Plan de l'étude

Les conditions d'affleurement du Domérien du Quercy septentrional sont telles que nous n'avons pu étudier une coupe continue de cet étage dans son intégralité. La coupe de Loubressac-Lapoujade, facile d'accès et d'observation, nous a semblé être la plus complète et représentative de cette région. Choisie comme coupe de référence de cette étude, elle sera décrite dans ce chapitre niveau par niveau, dans l'ordre stratigraphique. Dans un deuxième temps nous analyserons, membre par membre, les variations et évolutions latérales que l'on peut observer au sein de toutes les autres coupes. Nous pourrons donc proposer, à partir de ces données, un premier schéma de corrélations lithostratigraphiques et biostratigraphiques du secteur d'étude, ainsi qu'une comparaison avec les travaux réalisés dans le Quercy méridional.

II. 1. 2. Situation géographique des coupes

Indépendamment de l'étude d'affleurements ponctuels, onze coupes ont été levées dans le Domérien du Quercy septentrional. Elles se situent de part et d'autre d'un axe NW-SE, passant par les villes de Terrasson et Saint-Céré (Fig. 5) et se répartissent en cinq ensembles :
- dans la région de Terrasson, à Grèzes;
- à l'est et à l'ouest de la vallée de la Tourmente (à Turenne, Saillac, Saint-Michel-de-Bannières et au Puy d'Issolud);
- sur la rive gauche de la Dordogne (à Magnac et Gintrac);
- au nord et au sud de la vallée de la Bave (aux alentours du Chateau de Castelnau, à Loubressac-Lapoujade et à Saint-Laurent-les-Tours);
- dans "le Limargue" (Cf. I 2, à Miers et Alvignac).

Sur le tableau 1 sont indiqués, l'emplacement géographique exact de ces différentes coupes et pour chacune d'entre elles, le détail des unités lithostratigraphiques étudiées.
Figure 5 : Situation géographique des coupes lithologiques étudiées.
<table>
<thead>
<tr>
<th>COUPES</th>
<th>COORDONNEES</th>
<th>LAMBERT</th>
<th>LOCALISATION</th>
<th>LITHOSTRATIGRAPHE</th>
<th>CARTE GEOLOGIQUE à 1/50 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Grèzes</td>
<td>541.5</td>
<td>305.3</td>
<td>Lieu-dit Laval</td>
<td>Formation de la Barre à Pecten</td>
<td>TERRASSON</td>
</tr>
<tr>
<td>2 Turene</td>
<td>544.4</td>
<td>305.0</td>
<td>1 km au Sud de Turene, sur D. 8</td>
<td>Formation de Valeyrès; Formation de la Barre à Pecten</td>
<td>BRIVE-LA-GAILLARDE</td>
</tr>
<tr>
<td>3 Saillac</td>
<td>544.4</td>
<td>305.0</td>
<td>1 km au Nord-Ouest de Saillac, en face du Château de la Rue</td>
<td>Membres de Rieuval et de Lapoujade; Formation de la Barre à Pecten</td>
<td>SOUILLAC</td>
</tr>
<tr>
<td>4 St-Michel-de-Bannières</td>
<td>557.6</td>
<td>287.3</td>
<td>0.5 km au Sud de St-Michel-de-Bannières, sur D. 20</td>
<td>Membre des Calcaires en rangs de pavés</td>
<td></td>
</tr>
<tr>
<td>5 Puy d'Issolud</td>
<td>559.6</td>
<td>289.0</td>
<td>Entre Vayrac et le Puy d'Issolud</td>
<td>Membre des Argilites grises</td>
<td></td>
</tr>
<tr>
<td>6 Magnagnes</td>
<td>561.5</td>
<td>288.3</td>
<td>Entre L'Hermitage et Magnagnes</td>
<td>Formation de Valeyrès; Formation de la Barre à Pecten; Membre des Schistes carton</td>
<td></td>
</tr>
<tr>
<td>7 Gintrac</td>
<td>562.3</td>
<td>287.2</td>
<td>Au Nord de Gintrac, sur D. 30</td>
<td>Membre des Argilites grises</td>
<td></td>
</tr>
<tr>
<td>8 Loubressac-Lapoujade</td>
<td>562.3</td>
<td>287.2</td>
<td>0.5 km au Nord du lieu-dit Lapoujade, sur D. 14</td>
<td>Formation de Valeyrès; Formation de la Barre à Pecten</td>
<td></td>
</tr>
<tr>
<td>9 Castelnau</td>
<td>561.5</td>
<td>288.3</td>
<td>Château de Castelnau, sur D. 43</td>
<td>Membre de Rieuval</td>
<td>SAINT-CERE</td>
</tr>
<tr>
<td>10 St-Michel-Loubéjou</td>
<td>561.5</td>
<td>288.3</td>
<td>0.2 km au Sud de St-Michel-Loubéjou, sur D. 43</td>
<td>Rieuval</td>
<td></td>
</tr>
<tr>
<td>11 Puymule</td>
<td>561.0</td>
<td>287.0</td>
<td>Entre le lieu-dit La Croix blanche (D. 940) et le lieu-dit Puymule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 La Rouquette</td>
<td>561.0</td>
<td>287.0</td>
<td>Lieu-dit La Rouquette, sur D. 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Miers</td>
<td>565.0</td>
<td>285.5</td>
<td>1 km au Sud de Miers, sur D. 20</td>
<td>Membres de Rieuval et de Lapoujade</td>
<td>SOUILLAC</td>
</tr>
<tr>
<td>14 Alvincac</td>
<td>565.0</td>
<td>285.5</td>
<td>1 km au Nord d'Alvincac, sur D. 20</td>
<td>Formation de Valeyrès; Formation de la Barre à Pecten</td>
<td></td>
</tr>
<tr>
<td>15 St-Laurent les-Tours</td>
<td>565.0</td>
<td>285.5</td>
<td>sous le château de St-Laurent-les-Tours</td>
<td>Formation de Valeyrès; Formation de la Barre à Pecten</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1 :
Position géographique des coupes lithologiques et unités lithostratigraphiques étudiées
Figure 6 : La coupe-type de Loubressac-Lapoujade.
Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires
II. 2. LA COUPE TYPE : LOUBRESSAC-LAPOUJADE (FIG. 6)

La série stratigraphique de la coupe de Loubressac-Lapoujade peut être subdivisée en 7 niveaux.

II. 2. 1. Description de la coupe

Niveau 1 : ensemble marneux (5 m).
. 1a : les deux premiers mètres de cet ensemble montrent une alternance de deux faciès de marnes très différents:
 - à la base, 50 cm de marnes de couleur gris-noir, très friables (PJ 1). Elles contiennent de nombreux nodules marneux oxydés et des terriers parallèles à la stratification. Aucune faune n'y a été trouvée;
 - ensuite, 25 à 30 cm de marnes de couleur marron, beaucoup plus indurées et oxydées que les précédentes (PJ 2). Les nodules ferrugineux centimétriques sont toujours présents, ainsi que des petits lamellibranches.

Deux alternances identiques apparaissent au-dessus (PJ 3-PJ 4 et PJ 5-PJ 6).
. 1b : les marnes de couleur gris-marron, homogènes, parfois pseudo-noduleuses, s'indurent progressivement et deviennent de plus en plus détritiques sur 2,20 m. Les macrofossiles sont rares: lamellibranches et bélemnites de petites tailles, oursins (PJ 7 et 8), ammonites -Anatischus margaritatus- MONTFORT- (PJ 7). Les marnes renferment des nodules ferrugineux centimétriques, associés dans les quarante derniers centimètres à des nodules décimétriques de marnes grisés et stratifiées. Les marnes qui les englobent, sont très dures, rubifiées et parcourues d'une succession de minces liserés ferrugineux (PJ 11).
. 1c : encroûtement ferrugineux de 1 cm d'épaisseur.
. 1d : les marnes sus-jacentes sont de couleur marron, de plus en plus gréseuses vers le haut (PJ 12), et épaisse de 50 cm.

Niveau 2 : Alternance de marnes, lits gréseux et bancs calcaires (6 m).
. 2a : cette unité débute par un banc gréseux de 20 cm d'épaisseur, suivi sur 1 m d'une alternance décimétrique de bancs gréseux laminés et ferrugineux et de bancs de marnes plus ou moins gréseuses. Aucune faune n'est présente.
 Lacune d'observation (2,5 m).
. 2b : les bancs de calcaires plus ou moins argileux ont une épaisseur variant de 0.4 à 1 m. Les niveaux qui les séparent, épais de 5 à 35 cm, sont des marnes dures, stratifiées, de couleur noir, contenant des lamellibranches et des nodules oxydés. On observe des croûtes ferrugineuses très marquées, soit au milieu de ces passages marneux, soit à la base des bancs.
calcaires. Des nodules ou des passées grisâtres et argileuses, criblés de bioclastes jalonnent le dernier banc (PJ 23), dont l'épaisseur varie latéralement.

Niveau 3 : Barre de calcaire oolithique et ferrugineux (6 m).
Très facilement identifiable sur le terrain, ce troisième ensemble se présente sous la forme d'une barre calcaire de couleur rouge brique à violacé. Son lithofacies (calcaire oolithique ferrugineux très bioclastique) reste relativement homogène. La macrofaune est représentée par des bélemnites et épisodiquement par des poches d'accumulation de brachiopodes. Les pistes parallèles à la stratification sont très nombreuses. La principale caractéristique de cette unité réside dans la superposition et l'évolution latérale de différentes structures sédimentaires : bancs horizontaux ou ondulés, stratifications obliques alternées ou en mamelons... Une étude détaillée de ces diverses structures sédimentaires et de leur répartition sera proposée dans le chapitre III.

Le niveau 3 est interrompu par une surface indurée et oxydée, de 3 à 4 cm d'épaisseur. Celle-ci est d'autant mieux visible sur le terrain qu'elle sépare ces calcaires des marnes du niveau sus-jacent.

Niveau 4 : Marnes (4 m)

. 4a : les dix premiers centimètres de marnes sont très indurés et oxydés. Aucune faune n'y a été trouvée. Dans les 40 cm sus-jacents, les marnes de couleur marron, assez dures et bioclastiques, contiennent une macrofaune riche et diversifiée : ammonites *Amaltheus marginatus* MONTFORT et *A. gibbosus* (SCHLOTHEIM)-, gryphées, lamellibranches et crinoïdes. Les deux niveaux à *Gryphaea gigantea* SOWERBY montrent une faune en position de vie. Les valves des *Pholadomyidae* (*Pholadomya* sp. et *Mactromya* sp.) sont en connexion, ouvertes ou fermées.

Immédiatement au-dessus du second niveau de gryphées, les marnes sont plus argileuses, noduleuses à pseudo-noduleuses, mais surtout beaucoup moins fossilières (quelques lamellibranches uniquement) et bioclastiques qu'au-dessous.

Les marnes deviennent ensuite litées, oxydées et plus indurées, à l'approche d'un banc de calcaire argileux (PJ 38) situé à un mètre de la base du niveau 4. Sur le banc de calcaires argileux, les marnes sont de couleur marron, grossièrement litées et bioclastiques, jusqu'à un lit de marnes indurées et très rubifiées de 4 cm d'épaisseur (1.5 m de la base). Dans cet intervalle, les fossiles sont toujours très rares, avec une biophasique uniquement représentées par des oursins et quelques lamellibranches (pectens).

. 4b : encroûtement ferrugineux de 4 cm d'épaisseur (discontinuité I-M 2).

. 4c : un changement net du faciès apparait dix centimètres au-dessus du niveau induré et oxydé. Les marnes sont à présent de plus en plus argileuses vers le haut, de couleur gris-bleu, et accompagnées de multiples nodules ou liserés ferrugineux. Elles garderont le même faciès sur toute leur épaisseur (2 m).
Fig. 7: Lithologie et position de la macrofaune dans les marnes sus-jacentes à la discontinuité Calcaires-Marnes (Membre de Lapoujadé).

Niveau 5: Alternance calcaires-marnes (9.5 m).

- **5a:** alternance de bancs de calcaires décimétriques, bioclastiques, de couleur ocre, et d'interbancs marneux. Les premiers bancs montrent à leur base une macrofaune riche et diversifiée, de bélemnites (disposés dans tous les sens), de brachiopodes, d'huitres et de pectens (PJ 47, 49 et 52). Les marnes des interbancs sont assez finement litées, de couleur marron à gris. Elles sont riches en débris de lamellibranches et bélemnites. L'oxydation se manifeste par des liserés ferrugineux situés, soit au sein des marnes, soit à la base du banc calcaire sus-jacent.

- **5b:** sur le banc calcaire PJ 57, se développe une passée à dominante argileuse d'environ 2 m d'épaisseur, à couches marneuses assez épaisses (20 à 30 cm), séparées par de minces bancs calcaires (PJ 59 et PJ 64). Le banc PJ 61-62 est un calcaire très argileux et noduleux, à petits pectens.

- **5c:** ensemble à dominante calcaire (PJ 66 à 84) avec des bancs calcaires bioclastiques (encrines essentiellement), stratocroissants, et plus épais que les interbancs marneux. La macrofaune moins importante qu'à la base du niveau 5, n'est représentée que par quelques bélemnites et lamellibranches (pectens, *Oxytoma* sp.). Le dernier lit marneux, PJ 84', de 55 cm d'épaisseur, est composé de bas en haut:
 - de marnes argileuses et oxydées qui épousent les irrégularités du banc sous-jacent (PJ 84);
 - de marnes grises litées à nodules ferrugineux;
- de marnes marron homogènes.

Niveau 6 : Calcaire massif et alternance calcaires-marnes (4 m).

 . 6a : ensemble massif de bancs calcaires bioclastiques à bélemnites, lamellibranches et quelques brachiopodes (2.6 m). Les deux premiers bancs, PJ 85 et PJ 86 sont intensément dolomitisés.

 . 6b : alternance calcaires-marnes, au sein de laquelle les bancs carbonatés sont moins épais et moins bioclastiques que ceux immédiatement sous-jacents (1.4 m). Dans ce niveau réapparaissent quelques brachiopodes (rhynchonelles) dont la présence était discrète depuis la base du niveau 5.

Niveau 7 : Ensemble de bancs calcaires décimétriques (3.6 m).

Ce dernier ensemble lithologique essentiellement calcaire du Domérien, débute au banc PJ 96. Il se caractérise par un changement radical des faciès, de la stratigraphie, ainsi que du nombre et de la diversité des macrofossiles. Nous pouvons observer une première partie assez massive (PJ 96 à 101), qui correspond à l’empilement de minces bancs calcaires (10 à 20 cm), parfois noduleux (PJ 97), à surfaces inférieures et supérieures très irrégulières. Ces calcaires sont moins bioclastiques que dans les niveaux 5 et 6, d’une teinte plus rougeâtre et nettement plus riches en macrofaune : brachiopodes -Lobothyris subpunctata (DAVIDSON) et Tetarhynchia sp.-, encrines, lamellibranches et bélemnites. Les bancs calcaires de la seconde partie de ce niveau (PJ 102 à 104) présentent les mêmes caractéristiques, mais sont maintenant séparés par des interbancs marneux centimétriques. Le banc PJ 102 présente de nombreuses Finna en position couchée.

II. 2. 2. Les unités lithostratigraphiques

Les 7 niveaux lithologiques distinguées dans le Quercy septentrional peuvent s’inscrire assez aisément dans le découpage lithostratigraphique proposé en Quercy méridional par Cubaynes (1986). Les niveaux 5, 6 et 7, présentent les mêmes caractéristiques géomorphologiques (abrupt carbonaté s’insérant entre les replats herbeux du Domérien inférieur et du Toarcien inférieur), lithologiques, fauniques, et d’épaisseur, que la Formation de la Barre à Pecten dans le Quercy méridional. Nous la désignerons donc par ce même nom de formation.

Cette Formation de la Barre à Pecten étant clairement identifiée, les dépôts sous-jacents (niveaux 1, 2, 3 et 4) doivent être rattachés à la Formation de Valeyres. Mais, ainsi que nous l’avons déjà indiqué, celle-ci se compose dans le Quercy méridional de deux membres : le Membre des Argilites grises et le Membre des Marnes à taphoséquences de pente. Dans notre région d’étude, les marnes grises du niveau 1 et l’alternance marnes-grès-calcaires du niveau
2 présentent de fortes analogies avec le Membre des Argilites grises, en Grésigne. Par
contre, le niveau 3 (calcaire oolithique ferrugineux) est absent dans le Sud du Quercy.
Comme il induit des ruptures morphologiques et lithologiques importantes, il a donné lieu à
la création de deux nouvelles unités lithostratigraphiques :
- Membre de Rieuza (Astruc et al., 1995) pour le niveau 3 ;
- Membre de Lapoujade (Brunel et al., 1995) pour le niveau 4.
Nous considérons donc, à partir de ces données géométriques, que ces deux ensembles
qui composent la partie supérieure de la Formation de Valeyres, représentent l’équivalent
septentrional du Membre des Marnes à taphoséquences de pente.

En conclusion, la coupe-type de Loubressac-Lapoujade comprend les
unités lithostratigraphiques suivantes (Cf. Fig. 4) :
1) Formation de Valeyres
- 1a : Membre des Argilites grises, niveaux 1 et 2 ;
- 1b : Membre de Rieuza, niveau 3 ;
- 1c : Membre de Lapoujade, niveau 4 ;

2) Formation de la Barre à Pecten, niveaux 5, 6 et 7 .

II. 2. 3. Les données biostratigraphiques

II. 2. 3. 1. Macropaléontologie

A Loubressac-Lapoujade, les faunes les plus riches et diversifiées de céphalopodes ont été
trouvées dans les marnes, tandis que les ammonites sont très rares dans les bancs calcaires.
Les formations et membres sont tous datés, à l’exception du Membre de Rieuza :

Formation de Valeyres
- Membre des Argilites grises
 Ech. PJ 9, Amaltheus margaritatus (MONTF.), 1 exemplaire
 Ech. PJ 20, A. margaritatus, 1 ex. typique.
 ⇒ zone à Margaritatus

- Membre de Rieuza
 Pas de datation
- Membre de Lapoujade
 Aux environs de l'échantillon PJ 36, A. margaritatus, 4 ex.
 A. gibbosus (SCHLOTHEIM), 4 ex.
 A. sp. ind., 1 ex.
 ➞ zone à Margaritatus, sous-zone à Gibbosus

Formation de la Barre à Pecten
 Les ammonites n'ont pas été recueillies sur le site de la coupe de Loubressac-
 Lapoujade, mais dans une carrière située géographiquement à quelques centaines de
 mètres, en contre-bas du village de Loubressac, près du lieu-dit "L'église basse".
 - Partie sommitale de la Barre à Pecten. Pleuroceras hawskerense (YOUNG &
 BIRD), 1 ex.
 ➞ zone à Spinatum, sous-zone à Hawskerense.

Signalons d'autre part, la découverte non en place et plus bas stratigraphiquement, d'une
ammonite datant de la sous-zone à Apyrenum, Pleuroceras solare (PHIL.).

II. 2. 3. 2. Micropaléontologie (uniquement marqueurs)
 Les microfossiles n'apportent pas de renseignements plus précis que ceux donnés par les
ammonites. Nous citerons simplement la présence de quelques foraminifères du genre
Bolvina llaica, dans les premiers prélèvements du Membre des Argilites grises (Tab. 7).
Quand elle est présente en grand nombre, cette espèce est un indicateur de la base de la zone à
Margaritatus (sous-zone à Stokesi), mais elle peut monter jusqu'à la sous-zone à Gibbosus
dans de faibles quantités (communication orale de C. Ruget).

II. 2. 4. Les discontinuités sédimentaires

Les différentes discontinuités sédimentaires repérées sur le terrain, constituent un outil
permettant de faciliter les corrélations lithostratigraphiques et les interprétations des divers
paléoenvironnements rencontrés. Nous les avons classées en trois types, se différenciant par
leur contexte lithologique:

- les discontinuités de type Calcaires-Marnes, notées C-M;
- les discontinuités de type Intra-Marnes I-M;
- les discontinuités de type Intra-Calcaires I-C.
A Loubressac-Lapoujade, nous avons identifié six discontinuités sédimentaires, soit dans l'ordre stratigraphique :

- une discontinuité de type Intra-Marnes, I-M 1, dans le Membre des Argilites grises (niveau 1) :
 - stratigraphie : les ammonites récoltées, uniquement sous la discontinuité, indiquent la zone à Margaritatus;
 - lithologie : la discontinuité principale est annoncée par l'apparition de nodules marneux oxydés et de petits liserés ferrugineux et par une induration et un détritisme progressifs des marnes dans les centimètres sous-jacents;
 - macrofossiles : à 1.50 m et 1 m au-dessous de la discontinuité, deux niveaux d'oursins, quelques bélemnites et lamellibranches de petite taille, constituent les seuls lits fossilières. Cette macrofaune est inexistante au dessus de la discontinuité;

- une discontinuité de type Intra-Calcaires, I-C 1, au sein du Membre de Rieuzel (limite niveau 2-niveau 3) :
 - position stratigraphique : aucun élément de datation précis des bancs sus ou sous-jacents n'est disponible;
 - lithologie : la discontinuité est une surface ravinante. Elle sépare des bancs décimétriques, de calcaires plus ou moins argileux, d'une barre de calcaire oolithique ferrugineux à stratifications obliques ou en mamelon;

- une discontinuité de type Calcaires-Marnes, C-M, à la limite des Membres de Rieuzel (niveau 3) et de Lapoujade (niveau 4) :
 - position stratigraphique : les marnes sus-jacentes datent de la zone à Margaritatus, sous-zone à Gibbosus;
 - lithologie : elle sépare deux ensembles totalement différents, le Membre de Rieuzel carbonaté, au-dessous, dont l'épaisseur varie, et le Membre de Lapoujade marneux, au dessus, dont la puissance reste à peu près constante;

- une discontinuité de type Intra-Marnes, I-M 2, à l'intérieur du Membre de Lapoujade (niveau 4) :
 - position stratigraphique : les ammonites, exclusivement recueillies sous la discontinuité, relèvent de la zone à Margaritatus, sous-zone à Gibbosus;
 - lithologie : à son approche, les marnes bioclastiques, de couleur marron, lithées grossièrement, de plus en plus riches en oxyde de fer, sont progressivement de plus en plus indurées. Au dessus, les marnes sont plus argileuses, de couleur gris-bleu, noduleuses à pseudo-noduleuses;
... macrofossiles : contrairement à la base du Membre de Lapoujade qui contient une macrofaune abondante (Fig.), les fossiles sont très rares de part et d'autre de cette discontinuité. Nous avons uniquement observé un niveau d'oursins et de pectens, 20 cm au-dessous ;

une discontinuité de type Intra-Calcaires, I-C 2, dans la partie médiane de la Barre à Pecten (limite des niveaux 5 et 6) :

 . datation : aucune ammonite n'a été trouvée en dessous ou au-dessus ;
 . lithologie : la discontinuité correspond à une surface ravinante. Elle sépare des bancs calcaires ondulés, relativement minces, intercalés de marnes, (au-dessous), de bancs calcaires plus massifs et épais, à rides (au-dessus) ;

une discontinuité de type Intra-Calcaires, I-C 3, dans la partie sommital de la Barre à Pecten (limite des niveaux 6 et 7) :

 . position stratigraphique : les bancs sus-jacents datent de la zone à Spinatum, sous-zone à Hawskerense ;
 . lithologie et macrofossiles : située au dessus de bancs épais à rides, elle marque le brusque développement de minces bancs carbonatés décimétriques à stratifications horizontales et parallèles, à brachiopodes et crinoïdes très nombreux, indiquant le développement d'un substrat induré.

Ces différentes discontinuités sédimentaires, et en particulier celles des types Intra-Marnes et Calcaires-Marnes, nous serviront de fil directeur pour proposer des corrélations lithostratigraphiques entre les différentes coupes étudiées.

II. 3. LES COUPES ANNEXES

II. 3. 1. La Formation de Valayres

II. 3. 1. 1. Le Membre des Argilites grises (niveaux 1 et 2)

Saint-Michel-de-Bannières [13 km au N-W de Loubressac-Lapoujade] (Fig. 29)
Cette coupe, d'extension verticale très réduite, est la seule montrant dans le Quercy septentrional la base du Domérien, et plus particulièrement la limite Carixien-Domérien. Elle ne sera donc pas corrélée avec d'autres coupes lithologiques. Elle reste toutefois d'un grand
intérêt, à la fois stratigraphique -un nombre important d’ammonites y a été récolté-, et micropaléontologique (Cf. Chap. IV).

On observe sur une épaisseur de 2.5 m une alternance en bancs décimétrique de marnes argileuses et de marnes plus indurées.

Les trois niveaux notés SMI 14, 18 et 20 ont fourni une cinquantaine d’ammonites, d’un grand intérêt biostratigraphique :

SMI 14 :
- *Oistoceras figulinum* (SIMPS.)
- *Becheiceras gallicum* (SOW.)

⇒ zone à Davoei, sous-zone et horizon à Figulinum.

SMI 18 :
- *Protogrammoceras (Matteiceras) occidentale* DOM. et al.
- *Amaltheus stokesi* (SOW.)
- *Amaltheus bifurcus* HOW.
- *Lytoceras fimbriatum* (SOW.)

⇒ zone à Margaritatus, sous-zone à Stokesi, horizon à Occidentale.

SMI 20 :
- *Becheiceras gallicum* (SOW.)
- *Protogrammoceras (Matteiceras) monestieri* FISCHER
- *Protogrammoceras (Matteiceras) diornatum* DOM. et al.

⇒ zone à Margaritatus, sous-zone à Stokesi, horizon à Monestieri.

La limite Carixien-Domérien peut donc être localisée à quelques centimètres près entre les échantillons SMI 14 et SMI 18.

Gintrac [3 km à l’NW de Loubressac-Lapoujade] (Fig. 8, p. 42)

Des travaux de voirie réalisés au bord de la route sur la rive gauche de la Dordogne, près du village de Gintrac, ont permis de dégager un mur de marnes fraîches et en place. Cette coupe représente l’endroit où nous avons pu étudier le Membre des Argilites grises sur la plus grande épaisseur (16 m).

En l’absence de données biostratigraphiques, seuls des repères stratigraphiques et sédimentologiques ont rendu possible les comparaisons avec la coupe de Loubressac-Lapoujade :

- la présence, en continuité, du Membre de Rieuzal, du Membre de Lapoujade et de la Formation de la Barre à Pecten dans la falaise surmontant cette coupe;
Figure 8 : Coupes de Gintrac et du Puy d'Issolud.
Lithostratigraphie et Macropaléontologie.
- l'affleurement, dans la partie supérieure, du niveau d'alternance de marnes et bancs de grès du niveau 2a.

Nous avons reconnu la succession suivante :

- **Niveau 1** : marnes noires assez homogènes (11.10 m).

Les repères sédimentologiques sont assez rares, mais nous pouvons noter la présence de plusieurs horizons particuliers qui sont dans l'ordre stratigraphique :

- GI 16, niveau de meules calcaires décimétriques ;
- GI 21 à GI 22, série de liserés ferrugineux ;
- GI 25, mince banc induité et oxydé ;
- GI 27-28, niveaux de nodules marneux oxydés ;
- GI 29, surface très bioclastique et riche en oxyde de fer.

D'un point de vue paléontologique, seuls trois lits-repères sont à signaler :

- GI 16, rostres de bélemnites disposés parallèlement à la stratification, avec une orientation N 160° - N 180° ;
- GI 27-28, nombreux petits lamellibranches, terriers ou " pistes " parallèles à la stratification ;
- GI 29, sur trois à quatre centimètres, nombreux petits lamellibranches et bioclastes .

A partir du prélèvement GI 31, les marnes sont de couleur plus claire et deviennent de plus en plus gréseuses vers le haut (GI 32).

- **Niveau 2a** : au-dessus d'un double banc de grès très fin et laminé se développe une alternance de marnes plus ou moins gréseuses de couleurs beige, et de bancs de grès très fins (15 cm d'épaisseur en moyenne) laminés ou non. Les interbancs marneux sont épais en moyenne de 30 cm. Aucun fossile n'y a été trouvé.

Les conditions d'affleurement, au sommet de cette coupe, ne permettent pas de montrer l'existence du niveau 2b.

Magnagues [6 km à l'WNW de Loubressac-Lapoujade] (Fig. 9, p. 44)

On observe sur cette coupe les trois mètres sommitaux du Membre des Argilites grises, avec une alternance centimétrique à décimétrique de marnes noires friables, de marnes gréseuses, de bancs de grès fins parfois laminés (MG 14), de bancs de calcaires gréseux (MG 15) et de bancs franchement carbonatés (MG 12, MG 18). Aucune faune n'y a été trouvée.

Cette alternance présente de fortes analogies avec la première partie de niveau 2 décrite à Loubressac-Lapoujade. La seconde partie plus calcaire (niveau 2b) n'est pas présente à Magnagues, probablement par passage latérale de faciès, plutôt que par hiatus sédimentaire. Le banc MG 18 disparaît de l'Ouest vers l'Est.
Figure 9 : Coupe de Magnagues.
Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires.
Puy d’Issolud [12 km au NW de Loubressac-Lapoujade] (Fig. 8, p. 42)

Cette coupe entaille les niveaux 1 et 2 sur une moindre épaisseur (6.30 m) qu’à Gintrac. L’étude du niveau 2b n’a pas été effectuée en continuité avec celle des niveaux 1 et 2a.

Les ammonites récoltées aux niveaux de prélèvement PI 21, 22, 23, 24, 25 et 27 datent toutes de la zone à Margaritatus.

- **Niveau 1**: les marnes, observées sur une épaisseur de 4.40 m ont des faciès très voisins de ceux décrits sur les autres coupes. Alterent en effet des marnes de couleur marron à gris, litées finement, et des marnes grises, noduleuses à pseudo-noduleuses.

 Plusieurs horizons ayant un intérêt sédimentologique ou paléontologique sont à signaler :
 - PI 20 : horizon de petits nodules ferrugineux de 5 cm d’épaisseur dont la surface supérieure est mamelonné et très légèrement indurée;
 - PI 24 : petits terriers d’annélides, encripes;
 - PI 25 : liserés millimétriques ferrugineux et terriers centimétriques d’annélides;
 - PI 26 : les marnes s’indurent progressivement jusqu’à former un banc bien différencié de 6 cm d’épaisseur. Sa surface supérieure, durcie, est très oxydée.
 - PI 28 et PI 29 : horizon de plaquettes marneuses centimétriques (2.5 cm d’épaisseur) légèrement plus indurées, très fossilières (Oursins, Pentacrines, débris de lamellibranches).
 - PI 31 : même lithofaciès que PI 28, PI 29, mais sans fossiles.

- **Niveau 2a**: alternance marnes-grès sur une épaisseur de 2 m (PI 33 à 44). Les marnes gréseuses et litées, contiennent en faible quantité des bioclastes de lamellibranches et des terriers.

- **Niveau 2b**: alternance de marnes et de calcaires argileux (0. 80 m). Les bancs calcaires argileux sont noduleux et épais en moyenne de 10 cm, les bancs marneux de 20 cm. La partie sommital du niveau 2b est donc beaucoup plus marneuse au Puy d’Issolud qu’à Loubressac-Lapoujade.

Turenne [24 km au NW de Loubressac-Lapoujade] (Fig. 10, p. 46)

Le Membre des Argilites grises a été identifié par sa position, au-dessous du Membre de Rieuza, mais avec ici un lithofaciès différent de celui décrit à Loubressac-Lapoujade, Magnagues, Gintrac ou au Puy d’Issolud. Aucune ammonite n’a été trouvée sur les 4.30 m observables.

Trois bancs calcaires, s’indurant progressivement vers le haut (TU 10 à TU 12), débute la succession lithologique. Le dernier d’entre eux, très oxydé, est recouvert par 57 cm de marnes. Les 12 premiers centimètres (TU 13) sont de couleur ocre et contiennent beaucoup de petits lamellibranches, de pentacrines et des terriers parallèles à la stratification. Au-
Figure 10 : Coupe de Turenne.
Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires.
dessus, les marnes sont de couleur gris, moins fossilières et parsemées de nodules décimétriques de marnes plus indurées (TU 14). Le banc TU 15, à surfaces inférieures et supérieures très irrégulières, est formé des mêmes nodules que précédemment, mais encore plus indurés. Après 20 cm de marnes grises (TU 16), le lithofaciès passe progressivement à des marnes calcaréo-gréseuses (TU 17), puis à des calcaires finement gréseux à petites laminations (TU 18 à TU 22). Un banc de marnes grises (TU 23, 30 cm), à nodules ferrugineux centimétriques, s’intercalent entre l’ensemble gréseux sous-jacent et un ensemble de petits bancs calcaires plus ou moins indurés et gréseux (TU 24 à TU 26, 70 cm). Au-dessus, l’épaisseur des marnes du niveau de prélèvement TU 27 varie de 10 à 20 cm, en raison de l’ondulation et de l’irrégularité de la surface supérieure de TU 26 et de la surface inférieure de TU 28 (banc calcaire à base très oxydée parcouru de minces nodules ferrugineux, 20 cm). Le dernier banc du Membre des Argilités grises (TU 29), épais de 30 cm, est formé de marnes grises à lamellibranches et bélemnites, et nodules ferrugineux.

Les marnes homogènes du niveau 1 sont donc absentes à Turenne, ou situées plus bas dans la série. La position stratigraphique de la succession affleuran te et son caractère gréseux nous conduisent à penser que ces dépôts correspondent au niveau 2 des autres coupes, mais il nous est impossible de faire une distinction entre les niveaux 2a et 2b. Dans cette hypothèse de corrélations, le niveau 2 serait beaucoup plus réduit et condensé que sur les autres coupes, dans la mesure où il ne se poursuivrait pas plus bas, dans une zone masquée.

Alvignac [10 km au SW de Loubressac-Lapoujade] (Fig. 11, p. 48)

- **Niveau 2** : alternance de marnes grises et friables, de bancs décimétriques de calcaires de couleur gris et bioclastiques (6 m environ). La majorité des bancs ou pseudo-bancs calcaires sont plus ou moins ondulés. Seuls les bancs AL 34, AL 35 et AL 40 à 43 sont bien stratifiés.

A Alvignac, cette alternance marnes-calcaires semble être plus dilatée que sur les autres coupes. En effet, les intervalles marneux, généralement de 10 à 20 cm d’épaisseur, peuvent atteindre 1 m sur cette coupe. Les faciès noduleux (AL 30 à AL 39) sont très bioclastiques. Les marnes comme les calcaires contiennent principalement des brachiopodes, quelques lamellibranches et des bélemnites. Au-dessus, de AL 40 à AL 43, les calcaires sont moins indurés et plus gréseux. Le niveau 2b se termine par 25 cm de marnes indurées.

Saint-Laurent-les-Tours [8 km à l’Est de Loubressac-Lapoujade] (Fig. 12, p. 50)

Deux affleurements ponctuels concernant le Membre des Argilités grises ont été étudiés sur le bord de la route menant au château de Saint-Laurent-les-Tours.
Figure 11 : Coupe d’Alvignac.
Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires
- Niveau 1 :

Le premier d’entre-eux est un mur de marnes de 3 m d’épaisseur. Le premier mètre est composé de marnes litées de couleur beige, très bioclastiques et micacées. La microfaune, assez rare, est représentée par des lamellibranches de petite taille (Pinna).

Cette sédimentation marnese est interrompue par un banc de calcaires bioclastiques de couleur gris, dont l’épaisseur varie de 20 à 30 cm.

Au-dessus, les marnes sont très indurées et oxydées jusqu’à une croûte ferrugineuse située à 25 cm du banc calcaire. Cet intervalle a révélé la présence d’un niveau très fossilière, formé en grande majorité de petits lamellibranches (Phaladomyidae, Entolium, Inoperna, Monotis,…).

Les marnes sont ensuite moins indurées et fossilières et présentent des poches d’accumulation de bioclastes. Entre 40 et 60 cm au-dessus du banc calcaire, plusieurs niveaux de petits oursins (très nombreux, mais déformés et indéterminables) associés à des bélemnites (Astatites clavatus), des plicatules et quelques ammonites (cf. ci-après) ont été identifiés dans des marnes laminées.

- Niveau 2 :

Le deuxième affleurement, situé topographiquement environ 3 ou 4 m au-dessus du premier, est aussi essentiellement marnes. Le faciès, devenu beaucoup plus gréseux et induré que dans le niveau 1, nous conduit à corrélérer cet intervalle au niveau 2a. Deux ammonites (Amaltheus margaritatus MONTF.) ont été trouvées dans un niveau de plaquettes gréseuses (SLT 5).

En ce qui concerne l’âge de ces affleurements (SLT 4 ET SLT 5), une communication écrite de Ph. Fauré, nous précise "qu’il est difficile de se prononcer formellement quant à l’âge des niveaux 1 et 2 de Saint-Laurent-les-Tours. La zone à Margaritatus (Domérien moyen) ne fait pas de doute. L’absence d’individu se rapportant à l’espèce Amaltheus sudnodusus évoque plutôt la partie supérieure de la zone, mais cela n’est pas confirmé par la présence d’A. gibbosus. Le genre Amauroceras, avec l’espèce Amauroceras ferrugineum (SIMPS), est surtout représentatif de la sous-zone à Gibbosus dans les Grands Causses.

Seule la découverte d’Arieticeratinae permettrait dans ces niveaux une datation plus précise, à l’horizon près.

En bref : zone à Margaritatus, sous-zone à Gibbosus très probable".
Figure 12 : Coupe de Saint-Laurent-les-Tours
Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires.
II. 3. 1. 2. Le Membre de Rieuzaux (niveau 3)

Magnagues (Fig. 9, p. 44)

Nous rapportons au Membre de Rieuzaux quatre bancs calcaires très fossilières séparés par deux interbancs marneux (MG 19a à MG 22b), présentant une épaisseur de 1.40 m.

Les deux premiers bancs, d'une épaisseur de 55 cm, sont séparés par une couche ferrugineuse. La partie basale (MG 19a) est un calcaire ferrugineux très riche en fossiles et bioturbé. Le remaniement est très intense : - les coquilles de lamellibranches et de brachiopodes - Zeilleria sarthacensis (DESLONGCHAMPS) - et les rostres de bêlemmites sont brisés ;
- des morceaux de calcaires gréseux sous-jacents ont été repris (MG 19 - MG 19b)
La partie supérieure, qui montre les mêmes caractéristiques, semble toutefois moins remaniée.

Les deux autres bancs MG 20 et MG 22 sont de véritables lumachelles à brachiopodes - Zeilleria sarthacensis (DESLONGCHAMPS) et Lobotheiris subpunctata (DAVIDSON), exceptée la partie supérieure du banc MG 22 qui est beaucoup moins grossière et fossilière.

Immédiatement au dessus de ce dernier banc apparaît la discontinuité C-M. Sa présence entre le banc MG 22 et les marne du niveau 4 est un argument prépondérant pour corréler cet ensemble de bancs calcaires décimétriques et à stratification parallèles, à la barre de calcaires oolithiques et ferrugineux qui représente le membre de Rieuzaux à Loubressac-Lapoujade. Un changement latéral du lithofactes, ainsi qu'une diminution importante d'épaisseur, s'opère donc pour ce niveau 3 entre Loubressac-Lapoujade et Magnagues (6 m à 1.40 m).

Puy d'Issolud (Fig. 8, p. 42)

Le Membre de Rieuzaux a été étudié sur la route conduisant au Puy d'Issolud, en l'absence de la décharge publique de Vayrac. Il est constitué de trois bancs de calcaires bioclastiques (Pl 51, 52 et 53 ; 90 cm d'épaisseur). Un joint marneux de 5 cm sépare les deux derniers bancs. Pl 53 est couronné d'une couche ferrugineuse, identifiée à la discontinuité C-M. Depuis Magnagues, le lithofactes ne varie pas énormément ; par contre l'épaisseur a encore diminué (1.40 m à 0.90 m).

Turenne (Fig. 10, p. 46)

C'est dans cette région (Turenne et Saillac) que le Membre de Rieuzaux est le plus réduit. Il comprend un mince banc de galets carbonatés concrétionnés d'oxydes de fer et surmonté d'une couche ferrugineuse (TU 30a, 10 cm), un interbanc marneux d'épaisseur variable (2 à 7 cm), un banc calcaire bien individualisé, riche en faune (brachiopodes - Lobotheiris subpunctata et Tetrarhynchia sp. - et lamellibranches) et bioclastes (TU 30b-30c, 30 cm). Ce
dernier est surmonté par une surface indurée et rubéfiée de 3 à 4 cm d'épaisseur correspondant à la discontinuité C-M. C'est à partir de ce repère que, malgré leur faciès bien différent, ces 2 minces bancs calcaires séparés par un interbanc marneux sont rapportés au Membre de Rieuza.

Saillac [22 km au NW de Loubressac-Lapoujade] (Fig. 13, p. 53)

Située à 3 km à l'Est de la coupe de Turenne, le Membre de Rieuza à Saillac présente de très fortes analogies avec celui de Turenne.

Il est représenté par un seul banc calcaire, bioclastique, riche en gastéropodes et lamellibranches, et très oxydé. Sa surface basale, très irrégulière, fait varier son épaisseur de 20 à 35 cm. La même discontinuité C-M que celle décrite à Turenne est observable au sommet du banc. Nous observons donc une nouvelle diminution de l'épaisseur du Membre de Rieuza du Puy d'Issolud à la région de Turenne et Saillac.

Alvignac (Fig.10)

Ensemble calcaire à stratifications entrecroisées, structures sédimentaires en aubes et bancs ondulés (1,80 m d'épaisseur). Deux parties lithologiquement différentes peuvent y être distinguées :

- de AL 44 à AL 51, superposition de bancs décimétriques de calcaires bioclastiques à surfaces inférieures et supérieures très ondulantes. Les bancs sont séparés par des joints argileux millimétriques à centimétriques. Trois surfaces durcies et oxydées ont été repérées : la première à la limite des bancs AL 46 et AL 47, la deuxième, à la limite des bancs AL 49 et AL 50 et la troisième en surface supérieure du banc AL 51;

- au-dessus de cette dernière croûte ferrugineuse, alternent sur 35 cm d'épaisseur trois bancs calcaires centimétriques à stratifications ondulantes et trois interbancs de marnes indurées de couleur marron. Le dernier de ces bancs (AL 53) est surmonté d'une surface durcie et rubéfiée qui limite le niveau 3 calcaire et le niveau 4 marneux sus-jacent. Elle correspond à la discontinuité C-M.

La réduction d'épaisseur du Membre de Rieuza, signalée précédemment de Loubressac-Lapoujade à Turenne, est une fois de plus très nette en direction du Sud entre Loubressac et Alvignac (6 m à 1,80 m). La présence de stratifications très ondulantes et de structures en aubes n'a été observées que sur cette coupe et dans les régions de Loubressac-Lapoujade et de Castelnau.
Figure 13 : Coupe de Saillac.
Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires.
II. 3. 1. 3. Le Membre de Lapoujade (niveau 4)

Inséré entre le Membre de Rieuza et la Formation de la Barre à Pecten (unités lithologiques à dominante calcaire), le Membre de Lapoujade, marneux est très facilement reconnaissable sur le terrain.
Son épaisseur varie peu (4 m en moyenne).

Magnagues (Fig.9)

Les observations faites sur le Membre de Lapoujade à Magnagues montrent de grandes similitudes avec celles obtenues sur la coupe de référence:

Les ammonites, récoltées à 25 et 80 cm au dessus de la discontinuité C-M clôturant le Membre de Rieuza, datent de la zone à Margaritatus, sous-zone à Gibbosus :
- *Amaltheus margaritatus* (MONTF.), 8 exemplaires;
- *Amaltheus gr. margaritatus* (MONTF.), 2 ex.;
- *Amaltheus* sp., 1 ex.;
- *Amaltheus gibbosus* (SCHLOTH.), 3 ex.;
- *Amaltheus aff. gibbosus* (MONTF.), 1 ex.;
- *Arteficeras* sp., 1 ex.;
- *Amauroceras* sp., 1 ex.

Une surface durcie et rubéfiée (discontinuité I-M 2), située à 2.35 m de la base, scinde le membre en deux ensembles différents :

- **Niveau 4b**: marnes, de couleur marron, beaucoup plus indurées et ferrugineuses que dans l’ensemble sous-jacent, sur une épaisseur de 1.65 m. Ces dernières sont accompagnées de trois liserés ferrugineux dans les quarante premiers centimètres. La macrofaune est inexistant.

Il existe néanmoins quelques différences avec la succession de Loubressac-Lapoujade :
- l’épaisseur est moindre (4 m à Turenne; 3.15 m à Loubressac-Lapoujade);
- les marnes sont beaucoup plus indurées à Magnagues, peut-être en raison d’une teneur en argiles moins importante;
- le changement de faciès des marnes qui s'exprime de part et d'autre de la discontinuité I-M 2, est très net à Magnagues. En effet, les marnes sont beaucoup plus rougeâtres (oxydation), plus indurées, et moins fossilifères, dans le niveau 4b que dans le niveau 4a;
- à 1.55 m, au dessus de la discontinuité C-M, on peut noter la présence d'un niveau gréseux inconnu sur la coupe de référence.

Turenne (Fig. 10, p. 46)

Le Membre de Lapoujadé, épais de 4.50 m, présente la même bipartition de part et d'autre de la discontinuité I-M 2, située à 3.30 m de la base.

- **Niveau 4a** : l'ensemble sous-jacent à cette croûte ferrugineuse renferme de bas en haut, les repères suivants :
 - 25 à 30 cm de marnes indurées et ferrugineuses (TU 31);
 - un niveau de condensation de faunes (ammonites *Amaltheus margaritatus* (MONTF.), *Amaltheus striatus* HOW., *Amauroceras* sp., *Gibbirhynchia amalthei* (QUENST.),- bélemmites, pholadomies, pectens, encrines, plicatules, brachiopodes...) immédiatement au-dessus, au sein de marnes grises, plus argileuses associées à des nodules marneux oxydés. Les ammonites collectées dans cet horizon, et 20 cm plus haut, indiquent toute la zone à Margaritatus, sous-zone à Gibbosus;
 - cinq liserés ferrugineux entre 1.50 m et 2.10 m de la base;
 - une alternance de trois bancs stratocroissants de grès fins et laminés (TU 35, 37 et 39), et de marnes grises à nodules ferrugineux, jusqu'à la discontinuité I-M 2.

- **Discontinuité I-M 2** : elle s'exprime par un encroûtement ferrugineux de 1 cm d'épaisseur.

- **Niveau 4b** : il est beaucoup plus monotone que l'ensemble inférieur. Il s'agit d'une alternance centimétrique de minces bancs de grès très fins à laminations, parfois entrecroisées, et de marnes ôcrès et gréseuses. Aucune faune n'y a été trouvée. Son épaisseur est de 1.25 m.

Saillac (Fig. 13, p. 53)

Sur les 2.70 m d'affleurement, deux ensembles lithologiquement différents s'opposent : à la base une unité franchement marneuse; au sommet, une unité argilo-gréseuse et laminée. Ils peuvent être sans doute assimilés aux niveaux 4a et 4b identifiés à Turenne. Malheureusement, la discontinuité I-M 2 qui limiterait ces deux ensembles n'a pas été décélée sur le terrain.
II. 3. 2. La Formation de la Barre à Pecten (niveaux 5, 6 et 7)

La séparation en trois ensembles distincts de cette unité lithostratigraphique, déduites des observations de terrain à Loubressac-Lapoujade, peut s'appliquer aux autres coupes. Ce découpage est rendu possible par l'identification des discontinuités de type Intra-Calcaires I-C 2 et I-C 3. Bien que discrète et difficilement décelable sur le terrain, ces ruptures sédimentaires signalent dans tous les cas, des variations stratigraphiques, faciologiques et faunistiques des ensembles qu'elles séparent. De plus, les caractéristiques lithologiques et sédimentologiques, le contenu fossilières et l'épaisseur des sous-ensembles, montrent d'importantes similitudes d'un site à l'autre. A Saint-Laurent-les-Tours et à Grèzes, la division de la Barre à Pecten en trois unités est toujours possible, mais il existe de notables variations latérales de faciès et de structures sédimentaires, par rapport aux mêmes unités dans les autres coupes.

Magnaugues (Fig. 9, p. 44)

Cette coupe s'est révélée intéressante, car elle représente un des rares endroits où les conditions d'affleurements ont permis une étude en continuité de la Formation de la Barre à Pecten (Domérien) et du Membre des Schistes carton (Toarcien).

Les trois unités lithologiques ont été reconnues et ne montrent pas de différences notables avec leur équivalent à Loubressac-Lapoujade.

- Niveau 5

L'alternance de bancs calcaires bioclastiques pluridécimétriques, de couleur gris ou ocre, et d'interbancs marneux décimétriques, présente l'agencement suivant (MG 40 à MG 56, 6.40 m) :

. 5a : de MG 40 à MG 45, bancs de calcaires pluridécimétriques, de couleur gris ou ocre, très bioclastiques, dont la base est riche en fossiles (lamellibranches et bélemnites) et oxydée, intercalés d'interbancs marneux centimétriques;

. 5b : de MG 46 à MG 48, intervalle plus marneux que le précédent. Les bancs calcaires sont d'épaisseur moindre, et les marnes plus indurées et très bioclastiques sont parcourues de nombreux nodules ferrugineux. Le banc MG 46 est très riches en lamellibranches et bélemnites (disposées parallèlement à la stratification);

. 5c : de MG 49 à MG 56, ensemble beaucoup plus calcaire. C'est dans cet intervalle que les interbancs marneux du niveau 5 sont les plus réduits en épaisseur. Le banc MG 56 a fourni des brachiopodes du genre *Tetrahynchia tetrahedra* (SOWERBY) qui ne sont pas connus de manière certaine en dehors de la zone à Spinatum (communication écrite de Y. Alméras).
- Discontinuité I-C 2 : elle pourrait correspondre à une surface de condensation de bioclastes et fossiles (bélemnites, lamellibranches et brachiopodes), de 3 à 4 cm d'épaisseur, située à l'extrême base du banc MG 57. Le changement stratigraphique et lithologique qui s'opère au-dessus du banc MG 57 (intervalle plus franchement calcaire à bancs épais et massifs), confirme cette hypothèse.

- Niveau 6 : ensemble calcaire de MG 57 à MG 66 (4 m).

La deuxième unité de la Formation de la Barre à Pecten est connue à Loubressac-Lapoujade, beaucoup plus calcaire que la première. Les trois barres qui la composent (MG 57-61, MG 62-63 et MG 64-66) résultent de l'empilement de minces bancs de calcaires bioclastiques, de couleur gris, de 5 à 20 cm d'épaisseur. Les interbancs marneux ne sont présents qu'aux limites de ces trois ensembles de bancs. Le premier banc de chaque banc calcaire (MG 57, 62 et 64), présentent des caractéristiques différentes des bancs sus-jacents :
- le faciès est moins indemné;
- l'ondulation du banc est intense;
- la concentration de faune est très importante (principalement des lamellibranches et des bélemnites). Le banc situé immédiatement au-dessus, est beaucoup moins riche en macrofaune. Puis on observe un accroissement du nombre de fossiles (bélemnites disposés dans tous les sens et lamellibranches) jusqu'à la fin de chaque barre calcaire.

La discontinuité I-C 3 n'a pas été décelée à la limite des niveaux 6 et 7. Ceux, sont, ici encore, les changements stratigraphiques, lithologiques et fossilières qui nous ont permis de différencier ces unités.

- Niveau 7

Cet ensemble essentiellement calcaire est formé d'un empilement de minces bancs (20 cm au maximum) de calcaires bioclastiques à encrines, lamellibranches et bélemnites (MG 67 à 74, 2.30 m). Les brachiopodes qui caractérisent le niveau 7 n'ont été trouvés qu'à partir du banc MG 71 et sont malheureusement indéterminables. Les surfaces des bancs sont beaucoup plus irrégulières que dans le niveau 6 sous-jacent.

- Limite Domérien-Toarcien (Fig. 14, p. 58)

Dans le Quercy méridional (Cubaynes, 1986), le dernier banc de la Barre à Pecten date du Toarcien ("Banc à Palus"). Malheureusement, nous n'avons pas découvert les ammonites qui nous auraient permis de confirmer la position de cette limite d'étage dans le Quercy serpentrional.
A Magnagues, le banc sommital de la Barre à Pecten (MG 74) est épais de 15 cm. Sa surface inférieure est ondulée. Sa surface supérieure indurée (hard-ground) montre des rides d'orientation N 35° à N 50° et une karstification assez intense (Fig. 14).

Au-dessus, on observe :
- 2 cm d'argiles (MG 75), et une couche de lignite (MG 76, 1 cm), qui épousent les irrégularités (rides, karsts) du banc MG 74;
- 10 à 15 cm d'argiles plus détritiques et plus riche en oxyde de fer que les précédentes (MG 77);
- une croûte ferrugineuse (MG 78), très irrégulière, parfois charbonneuse. De part et d'autre de cette surface, l'induration et l'oxydation sont progressives;
- 10 à 15 cm d'argiles ocre, très collantes, à passées bleuâtres (MG 79);
- une seconde croûte ferrugineuse (MG 80), de moindre importance que la précédente, surmontée par les mêmes argiles que celles du niveau MG 79.

Turenne (Fig. 10, p. 46)
En raison des conditions d'affleurement, seule la base de la formation a pu être étudiée. On y reconnaît la même succession lithologique qu'à Loubressac-Lapoujade et Magnagues.

- Niveau 5 : alternance calcaires-marnes (6.50 m).
 - Sa : alternance calcaires-marnes de TU 42 à 46. Les bancs (70 cm d'épaisseur en moyenne), sont formés d'un calcaire ocre, bioclastique, riche en macrofaune.
(lamellibranches, huitres, brachiopodes, bélemnites...). Les interbancs marnieux (20 cm) contiennent les mêmes fossiles;

- 5b : un niveau où la sédimentation marnue domine de TU 47 à 55. Les marnes des échantillons TU 50 à TU 53, s'indurent progressivement. Le faciès des bancs calcaire, différent de celui de la base, présente deux aspects (TU 47 et 48, calcaires gris, bioclastiques et peu fossilifères; TU 51 et 52, nodules de calcaires argileux enrobés d'oxyde de fer);

- 5c : un ensemble calcaire, où les joints marnieux sont inexistants ou très réduits. Le faciès est voisin de celui des bancs TU 43, 44 et 46, mais de couleur plus sombre et moins riche en faune. Les surfaces inférieures et supérieures de ces bancs stratocroissants sont ondulées, mais de façon régulière. La partie sommitale du banc TU 61 est parcourue d'un joint stylolithique parallèle à la stratification;

- 5d : le double banc TU 62, divisé en deux par une surface légèrement érosive qui correspond à la discontinuité I-C 2. Dans le banc inférieur, la stratification soulignée par l'alignement des bioclastes, est nette et rectiligne. Dans le banc supérieur, la disposition quelconque des bioclastes nous indique que le remaniement a été intense. Cette discontinuité I-C 2 indique la limite entre les unités 5 et 6.

- Niveau 6 : il débute par un banc onduleux de calcaire argileux de 10 cm d'épaisseur. Ensuite, on observe un ensemble massif calcaire, où les limites de bancs sont moins nettes, et surtout plus irrégulières que dans l'unité 5.

Saillac (Fig. 13, p. 53)

- Niveau 5 : alternance calcaires-marnes (6.90 m). -SA 3 à SA 19-

Cette alternance, peut être corrigée banc par banc, à quelques centimètres près, de Turenne à Saillac. Les faciès, la macrofaune et l'épaisseur des strates sont pratiquement identiques. La différence la plus nette, réside dans l'apparition de nombreux brachiopodes dès le banc SA 11, alors que nous les trouvions plus haut sur les autres couches.

Un changement de faciès est visible à partir du banc SA 20. Le calcaire gris et bioclastique devient rougeâtre, plus grossier et plus bioclastique. Bien que la discontinuité I-C 2 nait pas été décélée, c'est à ce niveau que nous plaçons la limite entre les niveaux 5 et 6.

- Niveau 6 : ensemble calcaire (4.30 m).-SA 20 à SA 34-

Il ne présente pas de différences notables avec ses équivalents latéraux, hormis une richesse en faune plus importante (brachiopodes -SA 27-, bélemnites, lamellibranches - Gryphées-). Dans la partie supérieure de l'unité (SA 30), le remaniement a été intense : les rostres de bélemnites sont disposés dans tous les sens, les coquilles de lamellibranches sont brisées. Une ammonite -Pleuoceras spinatum (BRUG.), zone à Spinatum- a été trouvée sur le site, mais non en place.
- Niveau 7 : ensemble calcaire (2.20 m). -SA 34 à SA 45-

Un des critères de différenciation des niveaux 6 et 7 est infirmé sur cette coupe par l'apparition dès le niveau 5 de brachiopodes en grande quantité. Ce n'est donc pas ici le repère d'abondance des brachiopodes qui a été utilisé pour situer la base du niveau 7. Celle-ci a été placée au niveau du joint calcaréo-argileux à concentration de coquilles brisées et remaniées, SA 34. Les bancs sus-jacents montrent une oxydation plus intense et une réduction de leur épaisseur (15 à 20 cm en moyenne). Ceux-ci présentent en outre, des surfaces plus ondulées et irrégulières que les couches du niveau 6.

Alvignac (Fig. 11, p. 48)

Le couvert végétal n'a pas permis l'étude de la partie sommitale de la Formation de la Barre à Pecten. Néanmoins, sur les 10.50 m d'affleurements les trois niveaux lithologiques 5, 6 et 7 ont pu être reconnus.

- Niveau 5 : alternance de calcaires et de marnes organisés en 4 séquences stratocroissantes, de AL 54 à AL 70 (7 m).
 - 5a : Séquence 1, de AL 54 à AL 58.
 Elle est composée de l'empilement de bancs de calcaires décimétriques, de couleur grise, stratocroissants, de plus en plus indurés et bioclastiques de la base au sommet et de bancs décimétriques de marnes grises et friables. La macrofaune, uniquement observée dans les bancs calcaires, est représentée par des grands lamellibranches (pecten, Entolium).
 - 5b : Séquence 2, de AL 59 à AL 63.
 La partie inférieure est formée d'une alternance de bancs décimétriques de marnes moins friables et de calcaires argileux à lamellibranches (pholadomies, Entolium,...). La seconde partie, à dominante calcaire (AL 61 et 62) se termine par un banc lumachellique (AL 63) à lamellibranches (Pincta, Pholadomyidae) et brachiopodes (Térébratules).
 - 5c : Séquence 3, de AL 63 à AL 68.
 La différenciation entre la partie inférieure, exclusivement marneuse (AL 64a) et la partie supérieure calcaire (AL 64 à AL 68) est ici très nette. Les marnes sont de couleur gris foncé très bioclastiques et parsemées de nombreux petits lamellibranches. L'ensemble calcaire sus-jacent débute par un niveau lentilculaire (AL 64) très bioclastique et fossilière (lamellibranches et brachiopodes). Au-dessus, les bancs calcaires ont une épaisseur très variable et présentent des stratifications onduleuses. Le faciès est induré, bioclastique et plus grossier que celui des bancs calcaires des séquences 1 et 2. Le banc AL 68, très oxydé, de 5 cm d'épaisseur, correspond à un amoncellement de coquilles brisées.
Séquence 4, de AL 69 à AL 70.
On observe la même succession lithologique que dans la séquence 3. Les marnes de la base sont de couleur gris-noir, friables et très bioclastiques. Les bancs calcaires sont bien stratifiés contrairement à ceux de la séquence 3 mais ils possèdent un faciès identique.

- **Niveau 5** : ensemble calcaire de (1.80 m).
 Les bancs calcaires (AL 71 à AL 75) sont beaucoup plus épais et massifs que dans le niveau 3. Les interbancs marneux sont, eux, beaucoup plus minces (2 à 3 cm). Le lithofaciès ne présente pas de différences fondamentales avec celui du niveau 5 (calcaire de couleur gris, bioclastique à lamellibranches et bénitiales).
 A l’extrême base, nous notons un changement très net du faciès entre le banc AL 71 (calcaire argileux) et la base du banc AL 72 (calcaires très indurés à bioclastes très remaniés et coquilles de brachiopodes et lamellibranches). La limite entre ces deux bancs correspond à la discontinuité IC 2.

- **Niveau 7** : ensemble de bancs calcaires décimétriques à surface ondulée sur 1.50 m (AL 76 à AL 81).
 Le développement de bancs calcaires à brachiopodes, à surfaces inférieures et supérieures ondulées, beaucoup plus minces que dans le niveau 6, nous conduit à corréler cet ensemble avec le niveau 7 des autres coupes. La discontinuité IC 3 n’a pas été mise en évidence.
 A 1 km au N-W d’Alvignac près du point coté 299 (carte IGN au 1/25 000, 2136 Est Vayrac Padirac), la partie terminale de la barre à Pecten a été identifiée à partir du repérage, immédiatement au-dessus, des Schistes carton toarcien. Le dernier banc calcaire a révélé la présence d’un exemplaire de *Pleuroceras hawskerense*, datant de la zone à Spinatum, sous-zone à Hawskerense.

Dans la Formation de la Barre à Pecten à Alvignac, seule l’alternance calcaires-marnes du niveau 5 présente des caractéristiques très différentes de celles observées à Loubressac-Lapoujade et sur les autres coupes. Les quatre séquences stratocroissantes identifiées possèdent des bancs marneux beaucoup plus dilatés (20 à 90 cm d’épaisseur). La stratification très ondulante et lenticulaire des bancs AL 64 à AL 67 n’est pas présente sur les autres coupes alors que les intervalles calcaires sont plus réduits. Les niveaux 5 et 6 sont moins épais à Alvignac (respectivement 7 m et 1.80 m) qu’à Loubressac-Lapoujade (9.50 m et 4 m). Les conditions d’affleurement ne permettent pas de nous prononcer sur la variation d’épaisseur du niveau 7.
Saint-Laurent-les-Tours (Fig. 12, p. 50)

La Formation de la Barre à Pecten est visible dans sa plus grande épaisseur sur le flanc Sud de la butte de Saint-Laurent-les-Tours, sous la muraille du château. La partie basale de la coupe a été étudiée dans une maison en ruine, située juste sous le château et à l'Ouest de celui-ci.

- Niveau 5 : alternance calcaires-marnes (2.60 m).

Elle débute par un double banc de 80 cm. d'épaisseur, reposant sur les marnes grises de la partie supérieure du Membre de Lapoujade (80 cm.). Au-dessus, alternent cinq bancs calcaires de 20 à 30 cm d'épaisseur et des bancs marnex de 5 à 10 cm.

La partie basale de la Formation de la Barre à Pecten présente des caractéristiques très voisines, tant par la faune présente que par le lithofaciès et l'épaisseur des bancs de celles du niveau 5 de Loubressac - Lapoujade et des autres coupes.

Après la lacune d'observation, la Barre à Pecten affleure en continuité sur 13.20 m.

Deux ensembles ont pu y être distingués :
- de SLT 30 à SLT 45, le niveau 6 (9.60 m);
- de SLT 46 à SLT 49, le niveau 7 (3.20 m).

- Niveau 6 : ensemble calcaire.

 . 6a : de SLT 30 à SLT 39 (4.70 m), superposition de bancs calcaires d'épaisseur variable (20 à 60 cm). Les calcaires sont très bioclastiques et riches en macrofaune (encrines très nombreuses, lamellibranches, bélemnites, brachiopodes (en particulier à la base du banc SLT 34). Les bancs ont une couleur qui varie du brun au rouge suivant l'intensité de l'oxydation. Le lithofaciès et la couleur des bancs rappelle souvent ceux du Membre de Rieuzaux de Loubressac-Lapoujade (SLT 30, SLT 33 et SLT 35). Les deux derniers mètres de ce premier ensemble sont formés de bancs ayant le même faciès, mais leur stratification est beaucoup plus onduleuse qu'à la base. La partie supérieure du banc SLT 39 montre des rides symétriques d'orientation N 140° - N 160°;

 . 6b : au dessus de SLT 39 à SLT 45 (4.90 m). A la base, les interbancs marnex, jusqu'à ce point absents ou très réduits, sont épais de 10 à 20 cm. Les bancs calcaires présentent le même faciès que dans le niveau 6a. Les surfaces de bancs sont très irrégulières. Un double banc très oxydé, situé entre les bancs SLT 40 et SLT 41, est une véritable lumachelle à *Lobothyris subpunctata* (DAVIDSON). Les bancs SLT 40, 41 et 42 contiennent
aussi des brachiopodes associés à des bélénmites, des lamellibranches (gros pectens). Après le banc SLT 43, le lithofacies devient un peu plus argileux et un peu moins fossilifère. La surface supérieure du banc SLT 45 est parcourue de rides symétriques d’orientation N 150° à N 160°, la distance de crêtes à crêtes est de 55 à 65 cm.

- **Niveau 7** : ensemble de bancs décimétriques calcaires à stratification très ondulantes (3.20 m).

Le faciès des bancs est beaucoup plus argileux et bioclastique et moins oxydé (couleur ocre) que dans le niveau sous-jacent A1. Les joints marneux sont formés d’argiles verdâtres. La macrofaune est la même que celle observée dans le niveau A1 : rostres de bélénmites disposés parallèlement à la stratification, lamellibranches (pecten, *Pinna*), grands brachiopodes de type *Tetrarhynchia*. La taille des bioclastes est granocroissante à l’intérieur des bancs (SLT 47 et SLT 49). Ils sont de plus en plus nombreux de la base au sommet de cette unité. La surface supérieure du banc SLT 49 est une lumachelle à rostres de bélénmites.

Les systèmes de rides symétriques indiquent toujours la direction N 140° à N 160°. Celles-ci peut parfois être associée à la direction N 80° - N 90°.

Seule la base de la Formation de la Barre à Pecten peut-être corrélée avec le niveau 5 des autres coupes. Les lithofaciès des niveaux 6 et 7 sont exclusivement connus dans cette coupe. Leur numérotation, identique à celle proposée pour les autres coupes du Quercy septentrional, ne préjuge en rien d’identité d’âge et d’éventuelle corrélation.

Grèzes (Fig. 15, p. 64)

Située dans la partie la plus occidentale de notre domaine d’étude (43 km au NW de Loubressac-Lapoujade et 19 km à l’WNW de Turenne), cette coupe ne concerne que la Formation de la Barre à Pecten en raison du couvert végétal sur la partie inférieure et moyenne du Domérien.

Les variations du lithofacies sont telles que l’identification des niveaux 5, 6 et 7 n’est pas réalisable. Deux ensembles semblent toutefois s’individualiser, mais les corrélations avec leurs équivalents latéraux (niveau 5, 6 ou 7) dans les régions de Loubressac-Lapoujade ou de Turenne nécessitent une argumentation plus poussée (micropétrographie) que celle basée uniquement sur le lithofacies. Aucun élément de datation (ammonites) n’a été trouvé.

- **Premier niveau** :

Ensemble calcaire de couleur gris à rouge, détritique et bioclastique (grains de quartz arrondis), sur une épaisseur de 3.70 m (GRZ 1 à GRZ 17). Il débute par un banc calcaire de 50 cm d’épaisseur surmonté d’un intervalle marneux de 60 cm (GRZ 2, 3 et 4). Le premier
des bancs calcaires sus-jacents (GRZ 5) présente à sa surface inférieure (très oxydée) des rides symétriques d'orientation N 140°.

De GRZ 5 à GRZ 9, deux bancs de calcaires, de couleur gris-rouge, bioclastiques contiennent des bélemnites disposées dans tous les sens. À partir de GRZ 10, les calcaires sont beaucoup plus détritiques, gréseux (poche sableuse à quartz millimétriques) et fossilières. L'épaisseur des bancs devient très irrégulière. Ceux-ci présentent des stratifications obliques entrecroisées (GRZ 11 et GRZ 12) et des structures en auge (GRZ 13).

À partir de GRZ 14, le nombre de grains de quartz diminue mais leur grosseur augmente. Les bancs de calcaires, de couleur rouge, sont bien stratifiés et contiennent des bélemnites et des lamellibranches en grandes quantités. Les mesures d'orientation des rostres de bélemnites indiquent deux directions principales : N 30° à N 70° et N 120° à N 160°. Entre les bancs calcaires s'intercalent des sables argileux très grossiers et peu consolidés (grains de quartz arrondis millimétriques) dont l'épaisseur ne dépasse pas 5 cm.

Figure 15 : Coupe de Grèzes.

Lithostratigraphie, Macropaléontologie et discontinuités sédimentaires.
- Deuxième niveau : ensemble calcaire (3 m).

De GRZ 18 à GRZ 23, le faciès devient plus calcaire (les grains de quartz ne sont plus visibles). La faune est toujours représentée par des bélemnites (en grand nombre), des lamellibranches et quelques brachiopodes. Les bancs calcaires sont bioturbés.

On observe, en outre, un changement du lithofacies entre les base et les sommet des bancs GRZ 18-19, GRZ 20-21 et GRZ 22-23. Les bases semblent plus gréseuses, moins indurées et fossilifères que les sommets.

Après une passée de marnes gréseuses (GRZ 24) de couleur ocre, assez grossières, se développent trois bancs de calcaires noduleux (GRZ 25, 26 et 27). Le faciès, très différent de celui des bancs sous-jacents, est très finement sableux, moins bioclastique et moins fossilifère, dans des roches de couleur plus claire (jaune-ocre). Au-dessus, les bancs GRZ 28 à GRZ 31 sont stratifiés horizontalement et très indurés. Le faciès, bien que plus clair et moins bioclastique, semble voisin de celui de la base du deuxième niveau.

La Formation de la Barre à Pecten de Grèzes présente une ségrégation en deux ensembles :

- à la base, de GRZ 1 à GRZ 17, un niveau lithologique à faciès calcaire très gréseux, grossiers, bioclastiques et fossilifères. Sa partie médiane présente des structures en auges et des stratifications obliques entrecroisées.
- au sommet, de GRZ 18 à GRZ 31, un ensemble de bancs bien stratifiés de couleur claire. Plus on monte dans la série, plus le faciès s'affine par disparition des grains de quartz et des gros bioclastes. La présence, à ce niveau, de brachiopodes est le seul argument qui pourrait nous le faire rattacher au niveau 7 des autres coupes.

II. 4. Correlations stratigraphiques (Fig. 16)

II. 4. 1. Arguments de corrélations biostratigraphiques

Le découpage lithostratigraphique du Domérien en unités alternantes, à dominante marneuse (Membre des Argilites grises, Membre de Lapoujade), ou à dominante calcaire (Membre de Rieuval, Formation de la Barre à Pecten), facilite l'établissement des corrélations dans le Quercy septentrional.

La relative abondance en ammonites permet, en outre, de proposer un cadre chronostratigraphique assez précis pour les corrélations. L'exemple le plus remarquable est celui du Membre de Lapoujade. En effet, de Loubressac-Lapoujade à Turenne (24 km) en passant par Magnagues et Miers, nous retrouvons à quelques centimètres ou décimètres près,
Figure 16 :
Schéma de corrélations stratigraphiques des différents niveaux lithologiques et des discontinuités sédimentaires.
le même contenu fossilière dans le premier mètre des marnes, au-dessus de la discontinuité C-M clôturant le Membre de Rieuval. Les faunes d’ammonites datent, dans tous les cas, de la zone à Margaritatus sous-zone à Gibbosus. Elles sont associées à la même bi phase :
- horizon repère de gryphées en position de vie, Phalodomyidae en grand nombre (Phalodomya sp. et Macrotomya sp.), bélemnites, Pectinidae, Pinna sp., crinoïdes (Fig. 7, p.35).

Un second exemple nous est fourni par le dernier niveau lithologique (N° 7) de la Formation de la Barre à Pecten. Les ammonites, moins fréquentes que dans l’environnement marneux du Membre de Lapoujade, datent à Loubressac-Lapoujade et Alvincac de la zone à Spinatum, sous-zone à Hawskerense. Les corrélations biostratigraphiques ont été permises, pour ce niveau, grâce à la présence des mêmes brachiopodes [Lobothyris subpunctata (DAVIDSON)] et crinoïdes dans l’ensemble des coupes étudiées.

Le Membre des Argilies grises présente, dans sa partie supérieure, des niveaux d’oursins à Loubressac-Lapoujade, au Puy d’Issolud et à Saint-Laurent-les-Tours. Ces oursins trop déformés pour être déterminables ne peuvent servir d’arguments pour des corrélations biostratigraphiques, mais ils constituent un horizon repère important.

II. 4. 2. Les discontinuités sédimentaires (Fig. 16)

Les différentes discontinuités sédimentaires décrites à Loubressac-Lapoujade ne présentent pas toutes le même intérêt lithostratigraphique. En effet, les discontinuités à la limite Calcaires-Marnes (C-M) ou Intra-Calcaires (I-C) ne fournissent pas d’arguments de corrélation par elles-mêmes mais plutôt par les différences lithologiques, stratigraphiques ou paléontologiques entre les ensembles qu’elles séparent.

Au contraire, les discontinuités de type Intra-Marnes (I-M), au sein de séries homogènes (Membre des Argilites grises et Membre de Lapoujade) constituent un argument de corrélation stratigraphique très utile et facilement identifiable sur le terrain (discontinuités I-M 1 et I-M 2).

Par contre, nous verrons plus tard que ces discontinuités sédimentaires nous apportent, quelque soit leur type, des renseignements sur les modifications paléoenvironnementales des dépôts sédimentaires qu’elles délimitent.

II. 4. 3. Épaisseurs des unités lithostratigraphiques

Dans le Quercy septentrional, quatre domaines peuvent être isolés grâce à la comparaison des épaisseurs des membres et formations du Domérien.
Ainsi d'Est en Ouest, nous différencions (Fig. 17):

- le Domaine 1, coupe de Saint-Laurent-les-Tours, où la Formation de la Barre à Pecten est très développée (environ 25 m) et le Membre de Rieuval, réduit (1.90 m);

- le Domaine 2, région de Castelnau, Loubressac-Lapoujade et Miers, caractérisé par un Membre de Rieuval très épais (6 à 7 m en moyenne). La Formation de la Barre à Pecten, plus réduite que dans le premier domaine, a une puissance de 15 à 20 m;

- le Domaine 3, Magnagnes, Puy d'Issolud, Turenne et Saillac qui présente un Membre de Rieuval de faible puissance, se réduisant vers le N-W (1.50 m à Magnagnes, 90 cm au Puy d'Issolud, 30 cm à Turenne). La Formation de la Barre à Pecten conserve une épaisseur comparable à celle qu'elle avait dans le domaine précédent;

- le Domaine 4, coupe de Grèzes, où l'on observe une réduction très nette de l'épaisseur de la Formation de la Barre à Pecten (6 à 7 m.)

Notons que de Saint-Laurent-les-Tours à Turenne, l'épaisseur du Membre de Lapoujade varie très peu (4 à 6 m).

Figure 17 : Corrélation et épaisseur des unités lithostratigraphiques
II. 4. 4. Corrélations et comparaison avec le Quercy méridional

II. 4. 4. 1. La Formation de Valeyres

La base de cette formation n'ayant pas été étudiée dans le Quercy septentrional, en raison du couvert végétal, la comparaison ne concernera que sa partie supérieure.

Dans le Quercy méridional, la Formation de Valeyres est subdivisée en deux membres :
- le Membre des Argilites grises;
- le Membre des Marnes à taphoséquences de pente, qui représente l'équivalent méridional des Membres de Rieuzeal et de la Lapoujade.

A/ Le Membre des Argilites grises

Il est daté dans la région de la Grésigne (coupe-type de La boulbène; Cubaynes, 1986; Brunel, 1992) de la zone à Margaritatus, sous-zone à Stokesi, base de la sous-zone à Subnodosus. Son épaisseur, 15 à 16 m, est certainement beaucoup plus réduite que dans notre secteur d'étude (environ 50 à 70 m), bien que les conditions d'affleurement ne permettent pas de nous en assurer. Les argilites sont d'aspect très voisin, contiennent la même macrofaune (petits lamellibranches, bèlemnites, échinides, crinoïdes...) et la même microfaune : des foraminifères benthiques appartenant pour la grande majorité à la famille des nodosariidés; des ostracodes, avec une prédominance des genres Ogmocococha et Ogmocochella. La discontinuité Db, située dans la partie supérieure du membre (Cubaynes, 1986; coupe de La Boulbène), pourrait être corrélée avec la discontinuité 1-M 1 décrite à Loubressac-Lapoujade.

B/ La partie supérieure de la Formation de Valeyres ne présente pas les mêmes caractéristiques lithologiques, dans le Sud du Quercy (Membre des Marnes à taphoséquences de pente), et dans le Nord du Quercy (Membres de Rieuzeal et de Lapoujade). D'un point de vue biostratigraphique, les ammonites récoltées sur la coupe de La Boulbène permettent de dater le sommet de la Formation de Valeyres de la zone à Spinatum, sous-zone à Apyrenum. Les macrofaunes de brachiopodes du Membre de Rieuzeal (Cf. II. 3.1.2, Magnagues et Turenne) sont composées des mêmes espèces que celles du Membre des Marnes à taphoséquences de pente (Tetrahynchia sp., Zeilleria sartiacensis (DESLONGCHAMPS) et Lobothyris subpunctata (DAVIDSON)). L'épaisseur du Membre des Marnes à taphoséquences de pente (20-21 m) est plus importante que celle des Membres de Rieuzeal et de Lapoujade réunis (puissance maximale à Loubressac-Lapoujade, 10 m).
II. 4. 4. 1. La Formation de la Barre à Pecten

Cette formation se présente dans le Quercy sous la forme d'un ensemble massif de bancs décimétriques de calcaires bioclastiques, de couleur gris à roux, très reconnaissable sur le terrain car elle sépare l'alternance calcaires-marnes de la Formation de Valeyres et les marnes toarcientes. Son épaisseur est grossièrement équivalente dans les deux domaines d'étude (une vingtaine de mètres). Dans le Quercy méridional, seule la base de cette formation (coupe de La Boulbène) date de la zone à Spinatum, sous-zone à Apyrenum, tandis que dans le Quercy septentrional, c'est le sommet qui indique la zone à Spinatum, sous-zone à Hawskerense.

La distinction de trois ensembles (niveaux 5, 6 et 7) peut être faite de la même façon dans le Quercy méridional :

- le premier ensemble, alternance calcaires-marnes, est plus réduit en épaisseur que le niveau 5 à Loubressac-Lapoujade;

- le deuxième ensemble, à dominante calcaire, possède des bancs plus épais que ceux du niveau précédent. Nous pouvons le corrélérer avec le niveau 6 de notre secteur d'étude. Les différences essentielles portent sur son épaisseur (plus importante au Sud qu'au Nord), et sur la présence de chaîlles que nous n'avons pas observées dans le Quercy septentrional;

- le troisième ensemble est formé, dans les deux domaines d'étude, d'un empilement de minces bancs de calcaires à brachiopodes (espèces identiques) d'environ 2 à 3 mètres d'épaisseur.
CHAPITRE III

LES PALEO-ENVIRONNEMENTS

EVOLUTION DANS LE TEMPS ET VARIATIONS DANS L'ESPACE
CHAPITRE III. PALEOENVIRONNEMENTS
EVOLUTION DANS LE TEMPS ET VARIATIONS DANS L'ESPACE

III. 1. INTRODUCTION
 III. 1. 1. Objectifs
 III. 1. 2. Méthodes

III. 2. LA COUPE-TYPE : LOUBRESSAC-LAPOUJADE
 III. 2. 1. La Formation de Valeyres
 III. 2. 1. 1. Le Membre des Argilites grises
 A/ Données sédimentologiques
 a/ Figures et structures sédimentaires
 b/ Micropétrographie
 B/ Données minéralogiques
 a/ Argiles
 b/ Quartz
 c/ Goethite
 C/ Données géochimiques
 D/ Données palynologiques
 E/ Données micropaléontologiques (matériel dégagé)
 a/ Ostracodes
 b/ Foraminifères benthiques
 F/ Conclusion

 III. 2. 1. 2. Le Membre de Rieuval

 III. 2. 1. 3. Le Membre de Lapoujade

 III. 2. 2. La Formation de la Barre à Pecten

 III. 2. 3. Analyses en Composantes Principales des données de la
 minéralogie des argiles

III. 3. LES COUPES ANNEXES
 III. 3. 1. La Formation de Valeyres
 III. 3. 2. La Formation de la Barre à Pecten

III. 4. SYNTHÈSE ET CONCLUSION
 III. 4. 1. Paléogéographie
 III. 4. 2. Interprétation préliminaire en termes de stratigraphie séquentielle
 III. 4. 3. Limites et problèmes
III. **PALEOENVIRONNEMENTS**
ÉVOLUTION DANS LE TEMPS ET VARIATIONS DANS L’ESPACE

III. 1. INTRODUCTION

III. 1. 1. Objectifs

Le plan de ce troisième chapitre est identique à celui utilisé dans le deuxième. Les résultats des observations et des données géologiques seront exposées dans un premier temps, niveau par niveau, sur la coupe de Loubressac-Lapoujade. Nous pourrons dégager de cette étude l'évolution dans le temps des différents paléoenvironnements rencontrés au niveau de notre coupe type.

Dans la seconde partie, nous confronterons les résultats de l'analyse des différents niveaux lithologiques des coupes annexes à ceux décrits à Loubressac-Lapoujade. Les comparaisons nous permettrons d'établir les variations dans l'espace des paléoenvironnements sur notre section d'étude.

Plusieurs analyses ou méthodes géologiques ont été utilisées pour établir des conclusions :

- A. Les données sédimentologiques qui résultent d'une part des observations des figures et structures sédimentaires sur le terrain, et d'autre part d'une analyse micropétrographique réalisée sur la plaque mince de chaque échantillon calcaire.
- B. Les données minéralogiques.
- C. Les données géochimiques.
- D. Les données palynologiques.

Ces trois dernières analyses n'ont été effectuées que sur la coupe type de Loubressac-Lapoujade.

Nous proposons ensuite, grâce à ce travail, un cadre paléogéographique, une première interprétation en termes de stratigraphie séquentielle (Vail *et al.*, 1987), ainsi qu'un schéma de correlation des différents cortèges sédimentaires et séquences de dépôts individualisées.
III. 1. 2. Méthodes

A/ Données sédimentologiques

a/ Figures et structures sédimentaires

Lors du levé des coupes, nous nous sommes attachés à observer les surfaces supérieures et inférieures des bancs ou ensembles de bancs, l'intensité de l'ondulation ou du caractère noduleux, les figures sédimentaires particulières,...

Une étude de pédogamétrie a été entreprise sur le Membre de Rieuzaul de la coupe de Loubressac-Lapoujade. Les objectifs et méthodes de cette étude sont exposés dans le paragraphe III. 2. 1. 2.

b/ Micropéprographie

Toutes les lames minces des échantillons calcaires ont été effectués parallèlement à la stratification; et dans des rares cas perpendiculairement à celle-ci, pour observer des laminations particulières.

La description rend compte de la nature biologique et de la quantité relative des bioclastes, du nombre exact de foraminifères et de leur morphologie (Rugel, 1985) (Cf. Chapitre IV. 1. Micropaléontologie) et du pourcentage de quartz présents dans la lame mince.

B/ Données minéralogiques

L'analyse au rayon X de la fraction argileuse des 102 échantillons de la coupe de Loubressac-Lapoujade a été effectuée à l'Université de Lille par le professeur J-F Deconinck. La méthodologie employée est celle décrite par Holtzapfel en 1985. Les données de l'analyse minéralogique sont présentés sous la forme d'un tableau qui rend compte du pourcentage relatif de chaque espèce minérale (avec une erreur de ± 5 % environ):

- chlorite;
- illite;
- interstratifiés irréguliers, intermédiaires de la stratification de l'illite en smectite (notés I/S);
- interstratifiés irréguliers regroupés -chlorite/vermiculite et chlorite/smectite- notés 14-14;
- vermiculite;
- kaolinite;
- quartz;
- goethite. Les valeurs indiquées pour ces deux dernières espèces minérales non argileuses correspondent à l'intensité du pic de diffraction (4.26 Å pour le quartz et 4.2 Å pour la goethite), mesuré en centimètres.

Nous étudierons dans un premier temps les résultats bruts (en comparant les proportions relatives des argiles, quartz, goethite) afin de dégager, s'il y a lieu, des caractéristiques paléoenvironnementales de chaque niveau.

Nous montrerons ensuite grâce à une analyse statistique (Analyse en Composantes principales - A.C.P.), fondée sur les pourcentages respectifs de chaque argile par point de prélèvements, s'il existe ou non des corrélations entre chaque espèce minérale, et s'il est possible, d'obtenir des regroupements de prélèvements ayant un même profil minéralogique.

Nous tenterons par ailleurs d'interpréter en termes de paléoenvironnement les différents axes factoriels.

III. 2. LA COUPE-TYPE DE LOUBRESSAC-LAPOUIADE (Fig. 6, p. 32)

III. 2. 1. La Formation de Valeyres

III. 2. 1. 1 Le Membre des Argilites grises

A/ Données sédimentologiques

a/ Figures et structures sédimentaires

- **Niveau 1**
 Aucune figure sédimentaire n'a été observée.

- **Niveau 2**
 Les alternances de marnes avec des grès et calcaires argileux ont été séparé dans le chapitre précédent en deux sous-unités (niveau 2a, marnes et calcaires gréseux; niveau 2b, marnes et calcaires argileux).

 - **Niveau 2a** : les bancs gréseux ont des surfaces supérieures et inférieures planes. Certains bancs présentent des laminations fines (1 mm) à moyennes (3 mm), planes et parallèles (PJ 13 et 14). Ces dépôts n'ont pas subi l'action des vagues de tempêtes. Ils se sont réalisés sous une épaisse tranche d'eau en domaine d'offshore inférieur.

 - **Niveau 2b** : les surfaces basales des bancs de calcaires argileux sont légèrement ondulées. Les surfaces sommitales sont plus difficiles à observer en raison du passage généralement progressif du faciès calcaire au faciès marneux et laminé des interbancs. Les
b) Micropétrographie

- Niveau 1
Cette unité étant essentiellement marneuse, aucun prélèvement destiné à être étudié en micropétrographie n'a été effectué.

- Niveau 2
 - Niveau 2a : les bancs réguliers décimétriques sont des biomicrites ou des biopelmicrites gréseuses très homogènes. Le taux de quartz varie du bas vers le haut de 25 à plus de 50 %. Les gros bioclastes sont totalement absents. Les microbioclastes, comme le quartz sont très fins (taille < au 1/10e de mm). Les foraminifères, rares, ne sont représentés que par des formes droites de nodosariidés à remplissage pynteux (PJ 14; lingulines, nodosaïres). Les lames taillées perpendiculairement à la stratification nous montrent que ces bancs gréseux sont laminés (les lames ne sont pas toutes de même épaisseur et ne contiennent pas la même quantité de quartz). Ces micrites sont considérées comme des dépôts de plateforme externe (offshore inférieur).

 - Niveau 2b : après la lacune d'observation, les faciès gréseux font place à des biomicrites (packstone) très bioclastiques à ciment ferrugineux, de PJ 17 à PJ 22. Les bioclastes de crinoïdes sont de plus en plus morcelés et ovalisés de la base vers le sommet de ce niveau. Ils représentent l'essentiel du fond de la lame mince. Les bioclastes de lamellibranches, de brachiopodes, de gastéropodes et d'algues sont millimétriques à centimétriques. Les grands bioclastes (lamellibranches, brachiopodes, gastéropodes) sont morcelés ou intacts. Ils deviennent de plus en plus nombreux de la base au sommet.

La compaction est mise en évidence par l'interpenetration des bioclastes de crinoïdes (PJÉ20). La micritisation qui les affecte en PJ 22 témoigne d'une diagénèse précoce.

Les foraminifères sont en grande majorité des nodosariidés de formes droites mais la diversité morphologique et spécifique est plus grande que dans le niveau 2a. Les lingulines sont toujours dominantes mais nous pouvons aussi noter la présence de Lenticulina sp. mg Lenticulina et de dentalines.

Le taux de quartz détritiques a chuté et ne représente plus que 1 à 10 % de la surface de la lame mince.
L’augmentation de la taille des bioclastes, d’origines biologiques diverses, leur aspect morcelés (crinoïdes), la présence de rares oolithes (PJ 20), nous indiquent que l’énergie a augmenté et la hauteur d’eau diminué du bas vers le haut de cette série. Nous nous situons toujours dans un contexte de plateforme ouverte en domaine infralittoral, mais moins profond et distal que pour les dépôts sous-jacents (niveau 2a).

B/ Données minéralogiques

Les assemblages minéralogiques sont relativement complexes et constitués le plus souvent de 5 à 6 espèces différentes, comprenant chlorite, illite, vermiculite, kaolinite et interstratifiés très diversifiés.

Comme le prouve le caractère immature de la matière organique étudiée au niveau du Membre des Schistes cartons dans le Quercy septentrional (Qajoum, 1994), il apparaît que les sédiments n’ont pratiquement pas subi de transformations thermiques liées à l’enfouissement (T° max = 420°C en moyenne).

a/ Argiles (Fig. 18, p. 78)

- Niveau 1

L’ensemble marneux de la base PJ 1 à PJ 12 présente une fraction argileuse assez homogène dominée par l’illite (30% en moyenne) et la kaolinite (34% en moyenne). Ces minéraux sont associés à des interstratifiés (I/S et 14-14) et à de la chlorite et de la vermiculite. Pour ces deux dernières argiles, la présence de l’une exclut la présence de l’autre. Cet assemblage paraît être principalement d’origine détritique. Il y a peu de doute en ce qui concerne l’illite et la kaolinite. La chlorite et la vermiculite pourraient cependant provenir de la transformation de la smectite initiale. Les édifices interstratifiés 14-14 constitueraient ainsi les intermédiaires des transformations. En fonction du chimisme de la roche et des fluides interstitiels, une évolution diagenétique tardive (Diffractogramme 1 et 2) transformerait la smectite, soit en vermiculite soit en chlorite (communication orale, J. F. Deconinck).

Nous verrons dans le chapitre III. 4. qu’il existe pour ce niveau lithologique des relations très nettes avec les résultats de l’analyse géochimique et une relation indirecte avec les populations de foraminifères et d’ostracodes.

Les valeurs les plus fortes de kaolinite se situent de part et d’autre de la discontinuité (I-M 1) tandis que la proportion d’illite décroît globalement de PJ 1 à PJ 12.
Figure 18 : Coupe de Loubressac-Lapoujade.
Mineralogie des argiles
Figure 19 : Coupe de Loubressac-Lapoujade.
Intensité des pics de diffraction du quartz et de la goethite
(mesurée en centimètres).

-79-
- **Niveau 2**
 L'alternance marnes-grès-calcaires argileux possède une fraction argileuse beaucoup plus hétérogène.

 Elle se caractérise d'un point de vue minéralogique par:
 - une chlorite très abondante (PJ 16, 18, 19 et 23) (Diffractogramme 3). Il s'agit d'une chlorite très ferrifère, probablement proche de la berthiérine, qui pourrait provenir de la transformation de la kaolinite dans le milieu de sédimentation. On note du reste une faible proportion de kaolinite dans ces échantillons (Bhattacharyya D.P., 1983);
 - une baisse globale du pourcentage de vermiculite par rapport au niveau sous-jacent. La présence de cette argile exclue toujours la présence de chlorite. Les valeurs sont fortes pour les prélèvements gréseux et nulls ou peu élevés pour les marnes et les calcaires argileux;
 - une relative constance de l'illicite et des interstratifiés 14-14 de PJ 12 à 17, puis une argumentation nette de PJ 18 à 23. Deux échantillons (PJ 20 et 21) sont caractérisés par des fortes proportions d'interstratifiés 14-14 (mélange probable de chlorite/smectite et de chlorite/vermiculite) provenant très probablement de la transformation de la smectite.

b/ Quartz (Fig. 19, p. 79)

- **Niveau 1**
 La concentration en quartz dans les marnes est assez importante, et ne varie pas énormément d'un prélèvement à l'autre. On observe une chute de la quantité de quartz de PJ 11 à PJ 12, au passage de la discontinuité I-M 1.

- **Niveau 2**
 Le taux de quartz est en moyenne beaucoup moins important que celui des échantillons du niveau 1.

c/ Goethite (Fig. 19, p. 79)

- **Niveau 1**
 Seul les prélèvements PJ 4 et PJ 12 contiennent de la goethite en très petite quantité.

- **Niveau 2**
 L'augmentation du taux de goethite de PJ 11 à PJ 12 (discontinuité I-M 1), se poursuit dans le niveau 2 pour atteindre son maximum en PJ 17. Les valeurs sont ensuite à peu près constantes jusqu'à PJ 22, puis baissent immédiatement avant la discontinuité I-C 1 (PJ 23).
C/ Données géochimiques (Fig. 20, p. 82)

- Niveau 1
Les résultats de l'étude géochimique sont très difficiles, voire impossibles à interpréter, en raison d'une trop faible quantité en carbonate de calcium de certains échantillons marneux (PJÉ2, 4, 6, 7 et 10).

Les six premiers d'entre eux correspondent à une alternance de prélèvements pauvres en CaCO₃ (PJ 1, 3 et 5; 11 à 13 %) et de prélèvements très pauvres en CaCO₃ (PJ 2, 4 et 6; moins de 5 %).

Les concentrations en Mg, Sr, Mn et Fe varient considérablement d'un gisement à l'autre, mais nous pouvons observer une croissance des teneurs en Sr et Mg du bas vers le haut de cette série marneuse.

- Niveau 2
En ce qui concerne le niveau 2a, les observations sont les mêmes que celles exposées dans le niveau 1. Par contre le pourcentage de CaCO₃ augmente progressivement dans le niveau 2b (PJ 16 = 18.54 % à PJ 22 = 74.1 %). Ce phénomène peut être mis en relation avec le caractère de plus en plus calcaire des lithofaciès plus on monte dans le niveau 2b.

Les concentrations en Mn et Sr diminuent de PJ 16 à PJ 23. La quantité de fer atteint son maximum en PJ 18, PJ 19, et juste avant la discontinuité l-C 1, en PJ 23.

D/ Données palynologiques (Tab. 2, p. 84)

- Niveau 1
Le prélèvement PJ 5 est très riche en palynomorphes, essentiellement des spores (7 espèces) et des pollens (5 espèces) associés à des éléments marins : Dinokystes (2 esp.), Acritarches (1 esp.) et algues marines plus rares (2 esp.). Les pollens sont le plus souvent des pollens bisaccates (leur dissémination anémophile peut permettre un dépôt très distal). Le caractère marin de cet échantillon est marqué par la présence relativement importante des Dinokystes et des Acritarches.

- Niveau 2
- Niveau 2a : le résidu du prélèvement PJ 15 est assez riche mais moins que le précédent. Les formes sont très petites (ce qui est en général une caractéristique du palynofaciès liasique). La diversité spécifique de spores (6 esp.) et des pollens (4 esp.) est moins importante que dans l'échantillon PJ 5. Les deux espèces de Dinoflagellés sont les mêmes que précédemment. Les algues sont représentées par des Microcodium et des fragments de thalles de Botryococcus sp.. Les Acritarches n'ont pas été observés.
Figure 20 : Coupe de Loubressac-Lapoujade. Géochimie.
Teneur des prélèvements en Manganèse, Fer, Strontium et Magnésium.
Leur absence et la densité plus faible en éléments marins nous indiquent une influence marine nettement moins affirmée que dans le niveau 1.

- Niveau 2b : l'échantillon PJ 21 contient des pollens bisaccates très nombreux (8 esp.), des spores (5 esp.), des dinoflagellés (2 esp.), la même espèce d'Acritarches que celle du niveau 1 (Micrhystridium sp.) et quelques algues (Microcodium). La prédominance nette des spores et pollens nous montre que l'influence continentale est de plus en plus sensible.

E/ Données micropaléontologiques (matériel dégagé)

Seul l'intérêt paléoécologique des populations de foraminifères benthiques ou d'ostracodes sera pris en considération dans ce chapitre.

\textit{a/ Ostracodes}

- Niveau 1

Le premier prélèvement, PJ 1, présente la diversité spécifique la plus importante (8 espèces). L'association Polycpe cerasia-Liasina lanceolata, espèces aveugles vivant en-dessous de la zone photique, indiquerait un milieu relativement profond ou éloigné des côtes. Les espèces actuelles de Polycpe vivent en effet dans les étages infralittoraux à circalittoraux et ont un mode de vie planctonique (Bodergat et al., 1991).

Au-dessus, les assemblages d'ostracodes sont dominés par les genres Omgonconcha et Ogmocomchella qui présentent un grand nombre d'individus (PJ 1, 3 et 5). Le milieu, étage infralittoral interne, est moins profond et plus riche en nourriture que celui de PJ 1. Cette diminution de la bathymétrie se marque par la disparition des genres Polycpe et Liasina et par une densité faunique plus élevée. La concurrence interspécifique est faible et les niches écologiques nombreuses. Le milieu est en outre calme, le rapport carapaces/valves isolées étant fort (70 % en moyenne). Nous n'observons aucune variation de part et d'autre de la discontinuité I-M 1.

\textit{b/ Foraminifères benthiques}

Les espèces de foraminifères benthiques n'apportent malheureusement aucune information paléoécologique. A la base de l'affleurement, on observe une opposition des fréquences relatives en nodosariidés et Ammodiscus pour les six premiers prélèvements. Cette opposition s'inverse d'un gisement au suivant.

Ce problème sera traité ultérieurement dans le chapitre IV, Micropaléontologie.
Tableau 2 : Coupe de Loubressac-Lapoujade.
Tableau de répartition stratigraphique des taxons de Spores et Pollens, Dinokystes, Acritarches et Algues.

<table>
<thead>
<tr>
<th>Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPORES et POLLENS</td>
</tr>
<tr>
<td>Allisporites robustus</td>
</tr>
<tr>
<td>Allisporites sp.</td>
</tr>
<tr>
<td>Vitreisporites pallidus</td>
</tr>
<tr>
<td>Peripollenites elatoides</td>
</tr>
<tr>
<td>Classopolis torosus</td>
</tr>
<tr>
<td>Quadraeculina anelliformis</td>
</tr>
<tr>
<td>Cyathidites australis</td>
</tr>
<tr>
<td>Deltoidospora toralis</td>
</tr>
<tr>
<td>D. australis</td>
</tr>
<tr>
<td>Araucariacites australis</td>
</tr>
<tr>
<td>Lycopodiumsporites clavatoides</td>
</tr>
<tr>
<td>Cerebropollenites thiergathi</td>
</tr>
<tr>
<td>Baculatisporites wellmani</td>
</tr>
<tr>
<td>Calamospora tener</td>
</tr>
<tr>
<td>Deltoidospora aurora</td>
</tr>
<tr>
<td>Baculatisporites comauvensis</td>
</tr>
<tr>
<td>Holosporites altmarkensis</td>
</tr>
<tr>
<td>Chasmatosporites hians</td>
</tr>
<tr>
<td>Deltoidospora minor</td>
</tr>
<tr>
<td>Punctatisporites globosus</td>
</tr>
<tr>
<td>Chasmatosporites rimatus</td>
</tr>
<tr>
<td>Cyclotritele oligogranifer</td>
</tr>
<tr>
<td>Polypodisporites ipsiciens</td>
</tr>
<tr>
<td>Cyclotritele margaritatus</td>
</tr>
<tr>
<td>Eucomidites troedsonii</td>
</tr>
<tr>
<td>Sulcatisporites quadratus</td>
</tr>
<tr>
<td>Stereisporites cicatricosus</td>
</tr>
</tbody>
</table>

DINOKYSTES

| Nannoceratopsis senex |
| Mancodinium semitubulatum |
| Phalocysta eumeke |
| Valveodinium sp. |

ACRITARCHES

| Michystridium sp. |

ALGUES

| Tasmanites sp. |
| Botryococcus sp. |
| Microcodium |
F/ Conclusion

Les marnes du niveau 1 sont caractérisées par :

- 1) à la base, une alternance de deux faciès marneux
 - les marnes grises friables (PJ 1., 3. et 5.); riches en CaCO₃ (11 à 13 %) et en
 chlorite, et pauvres en vermiculite. On y observe de nombreux ostracodes et nodososaridés, et
 de rares Ammodiscus.
 - les marnes marrons indurées (PJ 2., 4. et 6.), pauvres en CaCO₃ (moins de 5 %)
 et en chlorite, mais riche en vermiculite. On retrouve de nombreux Ammodiscus; les ostracodes
 et les nodososaridés étant peu abondants ou absents. La même opposition chlorite/vermiculite,
 liée à la concentration des prélèvements en CaCO₃, a été observée dans le Berriasien, au niveau
 d'alternances calcaires-marnes (Deconinck & Debrabant, 1985; Deconinck, 1987).
 - 2) l'absence de figures sédimentaires (sédimentation marneuse d'offshore inférieur);
 - 3) la présence dans la partie supérieure de plusieurs liserés et engroûtements ferrugineux
 (arrôts de sédimentation fréquents);
 - 4) une prédominance de l'ilite et de la kaolinite, détritique, sur les autres minéraux argileux;
 - 5) une quantité importante de quartz;
 - 6) une quasi absence de la goethite;
 - 7) une augmentation de la teneur en Sr et Mg du bas vers le haut de la série;
 - 8) une proportion relativement importante (par rapport aux autres échantillons étudiés, cf.
 plus bas dans le texte) de palynomorphes d'origine marine (Dinokystes, Acritarches et algues);
 - 9) la présence d'espèces d'ostracodes sésillres et profondes (PJ 1, étage infra à circalittoral).

La discontinuité I-M 1, par :

- 1) des teneurs en kaolinite assez fortes dans les prélèvements sus et sous-jacents. Ces pics
 pourraient correspondre à des surfaces d'inondation par référence aux travaux réalisés dans le
 Berriasien (Deconinck, 1993);
- 2) une chute de la quantité de quartz et une augmentation du taux de goethite de PJ 11 à
 PJ12;

Le niveau 2, par :

- 1) à la base (niveau 2a), une alternance de marnes et de bancs de calcaires gréseux et
 laminés (biomicrites ou biopelmicrites -wackestone-, à microbioclastes), déposées dans un
 domaine d'offshore inférieur;
- 2) au sommet (niveau 2b), une alternance de marnes et des bancs de calcaires argileux
 (biomicrites -packstone- très bioclastiques à ciment ferrugineux). Les bancs calcaires sont
 interprétés comme des tempestites distales d'offshore supérieur;
- 3) une chlorite ferrifère proche des berthiérines très abondante. L'apparition des berthiérines traduit des conditions très oxydante, et indiquent un environnement d'eaux peu profondes (50 m), bien oxygénées, et proche des côtes (Baudin et al., 1995);
- 4) une diagenèse secondaire mise en évidence par l'interpénétration des bioclastes, l'abondance de chlorite et des interstratifiés 14-14;
- 5) un pourcentage de CaCO₃ de plus en plus important (PJ 22 = 74.1%);
- 6) un nombre moins important (espèces et individus) de palynomorphes marins en allant du niveau 2a vers le niveau 2b.

Ces différentes observations, et leurs interprétations, montrent que le contexte de dépôts évolue d'un domaine d'offshore inférieur (de plus en plus proximal du niveau 1 au niveau 2a), vers un domaine d'offshore supérieur médian à distal pour le niveau 2b. L'analyse micropétrographique nous indique en outre que l'énergie hydrodynamique a augmenté et la hauteur d'eau diminué, du niveau 2a au niveau 2b.

La discontinuité I-M 1 et ses répliques soulignent des arrêts de sédimentation successifs.

III. 2. 1. 2 Le Membre de Rieuza (Niveau 3)

A/ Données sédimentologiques

a/ Pendagmétrie

L'escarpement que forme le Membre de Rieuza sur le côté ouest de la RD 14 a permis l'étude de deux affleurements :
- le premier, sur le bord même de la route, présente les quatre derniers mètres de ce niveau lithologique, jusqu'à la discontinuité C-M;
- le second est situé à une dizaine de mètres à l'ouest du premier, dans une carrière désaffectée (3.60 m d'épaisseur).

Sur ces deux affleurements, nous avons pu effectuer plusieurs mesures de pendage qui concernent, soit les limites de lits, soit les lames à l'intérieur des lits. Nous avons employé la méthodologie décrite par G. Perin (1975). Les résultats de cette étude de pendagmétrie seront reportés pour chaque site, dans deux tableaux et sur deux figures (Tab. 3 et 5 et Fig. 21 et 23 pour le plan orienté Nord-Sud; Tab. 4 et 6 et Fig. 22 et 24 pour le plan Est-Ouest). Seules quelques lignes de stratification ont pu être étudiées dans les deux plans perpendiculaires, au sommet des affleurements. Malheureusement, elles sont trop rares pour entreprendre une étude fine et continue des plans de stratification successifs.

Nous ne connaissons que la composante Nord-Sud du plongement général des couches domériennes (6° vers le Sud). Les mesures de pendage réalisées dans le plan Nord-Sud seront donc basculées de 6° vers le Nord.
Figure 21:
Coupe de Loubressac-Lapoujade, route, plan Nord-Sud.
Figures sédimentaires du Membre de Rieuzeal.
Coupe de Loubressac-Apopiade, route, plan Est-Ouest.
Figures sédimentaires du Membre de Riezal.
Figure 23 :
Coupe de Loubressac-Lapoujade, carrière, plan Nord-Sud.
Figures sédimentaires du Membre de Rieuza.

-89-
Figure 24:
Coupe de Loubressac-Lapoujade, carrière, plan Est-Ouest
Figures sédimentaires du Membre de Rieuzal.
Tab. 3 : affleurement Lapoujade-route - plan d'étude orienté Nord-Sud- (Fig. 21, p.87)
- 45 mesures de pendage, sur une épaisseur de 4 m.
- pendage moyen des couches après basculement : 5°.

<table>
<thead>
<tr>
<th>Pendage</th>
<th>Total</th>
<th>limite de sets</th>
<th>intérieur de sets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nord</td>
<td>Sud</td>
<td>Nord</td>
</tr>
<tr>
<td>Nombre de mesures</td>
<td>28</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>min.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pendage moyen (en °)</td>
<td>4.2</td>
<td>6.3</td>
<td>4.4</td>
</tr>
<tr>
<td>max.</td>
<td>11</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

Tab. 4 : Affleurement Lapoujade-route - plan d'étude orienté Est-Ouest- (Fig. 22, p. 88, Pl. 7)
- 18 mesures de pendage, sur une épaisseur de 1.50 m.
- pendage moyen des couches: 11.5°.

<table>
<thead>
<tr>
<th>Pendage</th>
<th>Total</th>
<th>limite de sets</th>
<th>intérieur de sets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>Ouest</td>
<td>Est</td>
</tr>
<tr>
<td>Nombre de mesures</td>
<td>5</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>min.</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Pendage moyen (en °)</td>
<td>8.8</td>
<td>12.3</td>
<td>8.5</td>
</tr>
<tr>
<td>max.</td>
<td>12</td>
<td>30</td>
<td>12</td>
</tr>
</tbody>
</table>
Tab. 5 : affleurement Lapoujade-carrière - plan d’étude orienté Nord-Sud- (Fig. 23, p. 89)
- 34 mesures de pendage, sur une épaisseur de 3.60 m.
- pendage moyen des couches après basculement : 5.8°.
- 1 pendage nul.

<table>
<thead>
<tr>
<th>Pendage</th>
<th>Total</th>
<th></th>
<th>limite de sets</th>
<th></th>
<th></th>
<th>intérieur de sets</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nord</td>
<td>Sud</td>
<td>Nord</td>
<td>Sud</td>
<td>Nord</td>
<td>Sud</td>
<td>Nord</td>
<td>Sud</td>
</tr>
<tr>
<td>Nombre de mesures</td>
<td>15</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min.</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendage moyen (en °)</td>
<td>4.96</td>
<td>6.55</td>
<td>4.77</td>
<td>8.1</td>
<td>5.16</td>
<td>5.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td></td>
<td></td>
<td>9</td>
<td>16</td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 6 : Affleurement Lapoujade-carrière - plan d’étude orienté Est-Ouest- (Fig. 24, p. 90)
- 38 mesures de pendage, sur une épaisseur de 3.35 m.
- pendage moyen des couches: 6.7°.
- 7 pendages nuls.

<table>
<thead>
<tr>
<th>Pendage</th>
<th>Total</th>
<th></th>
<th>limite de sets</th>
<th></th>
<th></th>
<th>intérieur de sets</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est</td>
<td>Ouest</td>
<td>Est</td>
<td>Ouest</td>
<td>Est</td>
<td>Ouest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de mesures</td>
<td>12</td>
<td>19</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min.</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendage moyen (en °)</td>
<td>4.9</td>
<td>8.4</td>
<td>6</td>
<td>12</td>
<td>4.1</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td></td>
<td></td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions
Cette étude nous permet de mettre en évidence :
- le faible pendage générale des lignes de stratification (en moyenne moins de 10°);
- un pendage plus fort dans le plan Est-Ouest que dans le plan Nord-Sud;
- le caractère bidirectionnel des courants d’écoulement (pendages des couches dans toutes les directions);
- dans le plan Est-Ouest, un pendage de degré plus élevé vers l’Ouest que vers l’Est, que l’on considère les limites de sets ou les lamines;
- dans le plan Nord-Sud, un pendage, en moyenne, plus important vers le Sud que vers le Nord.

b) Figures et structures sédimentaires (Fig. 21, 22, 23 et 24)
Le litage : l’épaisseur des sets est supérieure à 5 cm, le litage est donc dit de grande taille (Allen, 1963). Plusieurs types de litage ont été reconnus :
- litage subhorizontal (inférieur à 10°);
- litage oblique plan;
- litage oblique en auge;
- litage oblique en mamelons (HCS);
- litage oblique en dépressions ou en creux (SCS).
La surface limite de dépôt (Campbell, 1967) peut être érosive ou non, plane, courbe ou en auge.

La lamination : les lamines sont, dans la très grande majorité des cas, parallèles et continues, fines, moyennes à épaisse (1 mm à 10 mm). L’intersection des lamines avec les surfaces limites de dépôt nous permettent de distinguer trois formes (Durand & Mischler, 1994, d’après Jopling, 1965 in Reineck & Singh, 1980) :
- les lamines angulaires, qui recoupent la surface de dépôt;
- les lamines concaves, qui deviennent courbes à l’approche de la surface de dépôt;
- les lamines tangentielles, qui épousent la forme de la surface de dépôt.
La vitesse d’écoulement augmente des lamines angulaires aux lamines tangentielles.

Le dépôt en zone subtidale agitée de ces calcaires oolithiques ne fait aucun doute. Bien qu’il soit difficile de corrérer ces deux affleurements, un examen plus précis de l’évolution verticale des structures sédimentaires nous permet d’affiner notre interprétation. La présence de structures sédimentaires primaires diversifiées (stratifications obliques en dépression -SCS- très nombreuses, litage oblique de faible angle et plus rares stratifications obliques en mamelons -HCS-), l’influence tidale très marquée, les
laminations subhorizontales à faiblement pentées, le caractère souvent érosif des surfaces limite de dépôt et l'absence de dépôts argileux, nous conduisent à attribuer ces dépôts à un domaine de shoré face inférieur à moyen. Les stratifications obliques en mamelons nous indiquent l'action épisodique des vagues de tempêtes dans un environnement sans doute un peu plus distal (offshore supérieur proximal) au-dessous de la limite d'action des vagues de beau temps.

c/Micropétrographie

Le premier prélèvement de cette unité lithostratigraphique (PJ 23) possède un microfaciès très voisin de celui des bancs sous-jacents (niveau 2b). Le milieu de sédimentation est le même, mais la diminution de la taille des bioclastes et leurs aspects plus morcelés traduisent l'effet d'un remaniement plus intense et probablement, d'une épaisseur moindre. Les quartz sont plus nombreux qu'au-dessous, et représentent 7 % de la surface de la lame minee.

Une lame mince taillée perpendiculairement à la stratification, provenant d’un échantillon (PJ 24) prélevé dans les premiers centimètres sus-jacents à la discontinuité I-C 1 (passage Niveau 2 - Niveau 3), montre une désorganisation progressive de l’agencement du matériel déposé. Dans la partie inférieure, la lamination est soulignée par une ferruginisation plus intense de certains feuillots, et par la disposition allongée des bioclastes (tous très émoussés). Le litage disparaît vers le haut de la lame minee, tandis que le désordre s’installe dans la disposition des bioclastes (beaucoup sont dressés verticalement). L’énergie est donc croissante à l’échelle de la lame minee.

Au-dessus, le microfaciès varie d’une dolobiosparite (grainstone) à la partie inférieure du membre-, à une oobiosparite ou oobiomicrosparite (grainstone) à la partie supérieure. Le cortège bioclastique reste le même pour tous les échantillons. Les bioclastes hétérométriques, brisés et/ou remaniés, sont essentiellement représentés par des échinides (radioles, encrines) et les lamellibranches. Ils sont associés à des bioclastes de brachiopodes, de serpules et de bryozoaires, moins nombreux, mais cassés et/ou émoussés de la même façon. Les bioclastes sont d’une manière générale de plus en plus gros, brisés et érodés, quand on monte dans la série.

Plusieurs lames minces (PJ 29, 30, 32 et 33) contiennent des extraclastes (ou galets mous) limités par des films algaires. Ils sont composés d’une micrite (ou biomicrite) gréseuse contenant de 30 à 40 % de quartz. Ces extraclastes proviennent sans doute de l’érosion, de la reprise par des courants, puis de la resédimentation à ce niveau, de matériel déjà induré, pénécontemporain et initialement interstratifié dans ces dépôts oolithiques.

A partir du prélèvement PJ 30, les oolithes apparaissent en grand nombre. Ce sont des ooides de type 1 (Rebelle, 1993) ou des oolithes de type α (Purser, 1980). Ils sont
hétérométriques, arrondis, sub-arrondis ou allongés, de petite taille (< à 1 mm), à cortex laminé très peu épais qui épousent les aspérités et combinent les dépressions des nucléi. Ces derniers sont pour la plupart des bioclastes de crinoïdes (micritisés ou pas) ou des petits galets de matériel provenant de l'unité 2a (quartz silteux). On note aussi la présence d'ooides superficielles ou proto-ooides.

L'interpenetration des bioclastes, ooides et extraclastes, visible au niveau des lames minces taillées perpendiculairement à la stratification, nous montre que ces sables bioclastiques et oolithiques intensément remaniés, très poreux à l'origine des dépôts, ont subi une compaction assez forte.

Le microfaciès du dernier échantillon (PJ 34), prélevé sous la discontinuité C-M, indique une diminution brutale de l'énergie hydrodynamique. Les oolithes ont disparu. La diagenèse précoce est caractérisée par un ciment pallissadique autour des grains, sous forme de cristaux de taille faible et régulière, témoignant d'une précipitation en milieu phréatique très peu profond (Purser, 1975, pp 225-228).

Ces dépôts de sédiments meubles de dunes ou de barres sableuses, plus ou moins oolithiques, ont été réalisés en domaine marin de forte énergie (subtidal agité), sous une faible tranche d'eau (approximativement 10 à 50 m). Les microfaciès ne varient pas considérablement, excepté le dernier qui indique une chute brutale de l'hydrodynamisme.

B/ Données minéralogiques

a/ Argiles (Fig. 18, p. 78)
Les diffractions obtenus sont de très mauvaise qualité, car il n'y a pratiquement pas d'argiles dans les échantillons. Ces calcaires oolithiques suggèrent un milieu de dépôt à hydrodynamisme trop élevé pour permettre la décantation des argiles. De plus, les oxydes de fer (goethite) sont abondants, ce qui a pour effet de diluer les argiles dans les préparations orientées. Seuls, l'ililite et les interstratifiés 14-14 sont présents dans le premier (PJ 24) et le dernier échantillon de ce niveau (PJ 34). Aucune explication plausible ne peut être donnée pour ce phénomène.

b/ Quartz (Fig. 19, p. 79)
Il est inexistant sur toute l'épaisseur du Membre de Rieuzaux.
c/ Goethite (Fig. 19, p. 79)

La teneur en goethite augmente brusquement au passage de la discontinuité l-C 1. Elle continue de croître ensuite de PJ 25 à PJ 28, puis baisse globalement (malgré deux accidents en PJ 30 et PJ 33) jusqu'à la discontinuité C-M. La concentration en goethite est dans le Membre de Rieuval, la plus élevée de tous les niveaux étudiés, ce qui est en accord avec son aspect très ferrugineux et oxydé. L'échantillon PJ 28 est le plus concentré en goethite de tous les prélèvements étudiés sur la coupe de Loubressac-Lapoujade.

C/ Données géochimiques (Fig. 20, p. 82)

PJ 28 présente des caractéristiques géochimiques très différentes des autres prélèvements. Les teneurs en Mn, Fe, Sr et Mg sont beaucoup moins élevées que celles des autres échantillons (résultat aberrant ou provenant de processus géochimique). Dans les autres prélèvements, les concentrations en Mn et en Sr ne varient pas énormément. Le magnésium est très abondant dans la partie médiane du membre. PJ 23 est très concentré en fer contrairement aux bancs sus et sous-jacents.

D/ Données palynologiques (Tab. 2, p. 84)

Aucun échantillon n'a été étudié.

E/ Données micropaléontologiques

F/ Conclusion

Le Membre de Rieuval est caractérisé par :
- 1) un aspect massif et une teinte rougeâtre très particulière;
- 2) des figures sédimentaires nombreuses et variées, témoignant d'un domaine de dépôt de *shoreface* inférieur à moyen, et épisodiquement d'un domaine d'*offshore* supérieur proximal (H.C.S.);
- 3) des microfaciès évoluant d'une dolobiosparite à une oobiosparite, puis à une oobiomicrosparite, à bioclastes très remaniés, indiquant un domaine de dépôt marin de forte énergie (subtidal agité, faible tranche d'eau);
- 4) l'absence de minéraux argileux et de quartz;
- 5) Le caractère particulier du prélèvement PJ 28, tant du point de vue géochimique que minéralogique (goethite). Bien qu'aucune différence majeure n'ait été observée avec les autres échantillons du membre en micropétrographie, et à titre d'hypothèse, ce prélèvement pourrait souligner l'existence de deux paraséquences dans le niveau 3, dont la limite se situerait à ce point;

- 6) la concentration en fer très importante, par rapport aux bancs sus et sous-jacents, immédiatement au-dessous de la discontinuité I-C 1 (PJ 23);

- 7) l'absence de microfaune, excepté quelques nodosariidés dans le prélèvement sommital du niveau 2b (PJ 23).

Toutes ces analyses nous permettent d'indiquer que les dépôts du Membre de Rieuza à Loubressac-Lapoujade se sont réalisés dans une zone subtidale agitée. L'évolution verticale des figures et structures sédimentaires montrent que nous nous situons la plupart du temps dans un domaine de shoreface inférieur, mais qu'épisodiquement s'intercalent des dépôts d'offshore supérieur proximal, sensiblement plus distaux, soumis à l'action des vagues de tempêtes. Une chute très nette de l'hydrodynamisme est enregistrée dans le microfaciès du dernier prélèvement du membre (PJ 34).

III. 2. 1. 3. Le Membre de Lapoujade (Niveau 4)

A/ Données sédimentologiques

a/ Figures et structures sédimentaires
Aucune figure ou structure sédimentaire n'a été observée.

b/ Micropétrographie
Le banc de calcaire argileux PJ 38 est une biomicrite (wackestone) gréseuse (10 % de quartz), à rares bioclastes de crinoïdes et de nodosariidés.

B/ Données minéralogiques

a/ Argiles (Fig. 18, p. 78)
On retrouve un assemblage minéralogique très proche de celui du niveau 1 (diffactogramme 6). Le pourcentage d'iléite et d'iléite/smectite est très voisin de celui du niveau 1. On observe cependant une légère augmentation de l'iléite après la discontinuité I-M 2.
Les teneurs en kaolinite sont légèrement plus faibles au profit de la vermiculite. On peut noter un pic relatif de kaolinite juste avant la discontinuité I-M 2.

La chlorite est pratiquement absente.

La proportion des interstratifiés 14-14 décroît régulièrement, de la base au sommet de ce membre, alors que celle de la vermiculite augmente.

b/ Quartz (Fig. 19, p. 79)

La teneur en quartz, qui était nulle dans le Membre de Rieuzal, augmente de façon très significative après la discontinuité C-M (PJ 35). Les valeurs sont ensuite moins fortes mais restent relativement constante (tous les échantillons contiennent du quartz, excepté le seul prélèvement calcaire de ce niveau, PJ 38). Nous n’observons pas de variations nettes de part et d’autre de la discontinuité I-M 2.

c/ Goethite (Fig. 19, p. 79)

Le taux de goethite baisse brutalement au passage de la discontinuité C-M (PJ 34 à PJ 35). Cette décroissance se poursuit jusqu’à PJ 37. Le banc calcaire PJ 38 présente la concentration la plus élevée du Membre de Lapoujade. La discontinuité I-M 2 est soulignée par une inversion de tendance, avec une décroissance régulière de la teneur en goethite de PJ 38 à PJ 41. D’une manière générale, les prélèvements sous-jacents à cette surface oxydée sont plus riches en goethite que ceux situés au-dessus.

C/ Données géochimiques (Fig. 20, p. 82)

Les teneurs en manganèse et en fer chutent brutalement de PJ 34 (niveau 3) à PJ 35 (niveau 4), tandis que celles du strontium et du magnésium augmentent. Les concentrations de tous les éléments chimiques diminuent ensuite, puis croissent jusqu’à la discontinuité I-M 2. Ceci est très net en ce qui concerne le fer et le magnésium. Dans la moitié supérieure, les proportions en fer (beaucoup plus importantes qu’au-dessous), strontium et magnésium baissent globalement, alors que celles du manganèse s’élèvent sensiblement.

D/ Données palynologiques (Tab. 2, p. 84)

Le premier des deux échantillons étudiés dans le Membre de Lapoujade, PJ 36, est aphytique. Le second, PJ 44, renferme 10 espèces de pollens, 6 de spores et 3 de dinoflagellés. Les éléments marins sont plus rares que dans le Membre des Argilites grises. On observe une grande abondance de pollens bisaccates et une diversification importante de la microflore (surtout des spores). La variété des végétaux terrestres semble donc plus importante, ce qui pourrait être lié à des précipitations relativement plus fortes que le Membre.
des Argîlites grises. Du point de vue palynologique, nous nous situons dans un contexte paléoenvironnemental de plus proximal que dans les Marnes de Valeyres.

E/ Données micropaléontologiques

a/ Ostracodes

Ils sont présents en petit nombre jusqu'à la discontinuité I-M 2 (PJ 36, 37 et 39), puis pratiquement inexistants au-dessus (PJ 42, 1 individu).

b/ Foraminifères benthiques

Le contenu microfaunique des gisements s'oppose très nettement de part et d'autre de la discontinuité I-M 2. À la base, PJ 37 et PJ 39 contiennent beaucoup de nodosariidés et peu d'Ammodiscus. Au-dessus de la discontinuité, les nodosariidés sont pratiquement inexistants et les Ammodiscus relativement abondants. La quantité de ces derniers diminue progressivement jusqu'à la fin du membre.

F/ Conclusion

Le Membre de Lapoujade présente les caractéristiques suivantes :
- 1) une sédimentation marneuse homogène;
- 2) une alternance de prêlevements identique à celle de la base du niveau 1 :
 - échantillon riche en ostracodes et nodosariidés, riche en chlorite, et à pourcentage de CaCO₃ élevé (PJ 37);
 - ou échantillons riches en Ammodiscus, riches en vermiculite, et à faible pourcentage de CaCO₃ (PJ 36 et PJ 39);
- 3) un profil minéralogique voisin de celui du niveau 1;
- 4) une teneur en quartz importante (comparée à celle du niveau 3) et proche de celle du niveau 1;
- 5) une proportion en goethite beaucoup moins élevée que dans le niveau 3, qui baisse au passage de la discontinuité I-M 2;
- 6) une diversité spécifique des spores et pollens très importante, qui souligne un environnement plus proximal que celui des niveaux 1 et 2.

Les dépôts marneux du Membre de Lapoujade présentent d'un point de vue sédimentologique, minéralogique et géochimique, des caractéristiques très voisines de celles du Membre des Argîlites grises. L'analyse palynologique semble toutefois nous indiquer un domaine de sédimentation d'offshore.
inférieur plus proximal que celui du niveau 1. En ce qui concerne la micropaléontologie, le passage de la discontinuité I-M 2 marque une baisse très significative du nombre et de la diversité spécifique des nodosariidés et des ostracodes, alors que la quantité d’*Ammodiscus* évolue à l’inverse.

III. 2. 2. La Formation de la Barre à Pecten (Niveau 5, 6 et 7)

A/ Données sédimentologiques

a/ Figures et structures sédimentaires

- **Niveau 5**

Les bancs calcaires de cette alternance calcaires-marnes sont caractérisés par une stratification horizontal, parallèle et décimétrique. Les figures de base et de sommet de banc sont très difficiles à observer en raison de mauvaises conditions d’affleurements. Nous pouvons toutefois noter que les surfaces inférieures et supérieures des bancs sont irrégulières, et peu (PJ 57 et PJ 66) ou pas ondulées. Le banc de calcaire argileux présente une stratification pseudonoduleuse à noduleuse.

Les bancs calcaires ne présentent pas de litage ou de laminations.

Les interbancs marneux sont d’épaisseur centimétriques, parfois laminées, et épousent les irrégularités des bancs calcaires.

Ces dépôts sont interprétés comme des tempestites distales, formées dans un environnement d’*offshore* supérieur médian à distal.

- **Niveau 6**

La barre calcaire de la base de ce niveau présente une superposition de bancs décimétriques, horizontaux, à surfaces beaucoup plus ondulées que dans le niveau 5. Les interbancs argileux sont absents à la base (PJ 86 à PJ 90), puis réapparaissent au sommet (PJ 91 à PJ 95). Ceux-ci sont d’épaisseur moindre que dans le niveau lithologique sous-jacent.

Ces calcaires se sont déposés dans un domaine plus proximal que ceux du niveau 5 : *offshore* supérieur proximal. Le développement des interbancs marneux au sommet peut nous indiquer des conditions de dépôt sensiblement plus distales du bas vers le haut de cette série.

- **Niveau 7**

Il correspond à l’empilement de bancs de faible épaisseur (5 à 10 cm) sans interlits argileux (PJ 97 à PJ 101). La base et le sommet de tous les bancs sont ondulés.
Les structures sédimentaires nous conduisent à interpréter ces dépôts, plus distaux que les précédents, comme des tempestites distales formées entre la limite d'action des vagues de tempêtes et la limite d'action des vagues de beau temps : *offshore* supérieur médian à distal.

- **Conclusion**

La lithologie, les figures et structures sédimentaires, nous indiquent des domaines de dépôts plus prooximaux du niveau 5 au niveau 6, puis plus distaux du niveau 6 au niveau 7.

Le niveau 5 montre un contexte paléoenvironnemental de plus en plus proximal, mis en évidence par la diminution d'épaisseur des interbancs marneux, et le développement de bancs calcaires plus épais et stratocroissants.

Le niveau 6 montre un dispositif sédimentologique inverse du précédent (donc de plus en plus distal).

Les figures sédimentaires ne permettent pas de montrer une évolution des domaines de dépôts du niveau 7.

b/ Micropétrographie

Le découpage de cette formation en trois niveaux (5, 6 et 7), issu des observations de terrain, est beaucoup plus difficile à dégager de l'étude micropétrographique, en raison de la relative homogénéité des faciès.

- **Niveau 5**

Le microfaciès dominant de PJ 48 à PJ 85 est une biomicrite (packstone ou packstone/grainstone) à bioclastes de crinoïdes (les plus nombreux), de lamellibranches, de serpules et de brachiopodes. Excepté le premier banc PJ 47 (biopelmicrite gréseuse, 40 % de quartz détritique), le reste des niveaux de prélèvements calcaires contient de 3 à 5 % de quartz. Seuls quelques bancs correspondent à des décharges détritiques de quartz anguleux à subanguleux : PJ 61, 15 à 20 % de quartz; PJ 72, 7 à 10%). Un examen plus précis de la taille, de la morphologie et de l'origine biologique des bioclastes nous permet en outre de mettre en évidence quatre séquences micropétrographiques qui montrent une énergie croissante de la base au sommet pour chacunes d'entre-elles. La première, de PJ 47 à PJ 59, est caractérisée à la base par une biopelmicrite gréseuse, au milieu par une biomicrite (packstone) à bioclastes de crinoïdes très remaniés, et au sommet par une biomicrite (packstone/grainstone) à bioclastes de crinoïdes et de lamellibranches, et de rares oolithes en chamosite. Les autres séquences, PJ 61 à PJ 70, PJ 72 à PJ 80 et PJ 82 à PJ 84, montrent une évolution très voisines des microfaciès. Les bioclastes, remaniés et ovoïdes, des biomictices (packstone) gréseuses sont en majorité composé de crinoïdes. Au sommet, ceux des biomictices (packstone/grainstone) ou des biomicrosparite (grainstone) sont d'origine...
beaucoup plus diverses (crinoïdes, lamellibranches, serpules, gastéropodes) et de deux types : les petits sont remaniés et morcelés par de multiples reprises, tandis que les grands ont des cassures fraîches et franches. Cette évolution, que l'on observe pour chaque séquence, est valable à une échelle d'ordre supérieur pour l'ensemble de ce premier niveau de la Formation de la Barre à Pecten.

Ce dernier évoluerait donc de dépôts de plateforme ouverte, plus distaux à la base, vers des dépôts sensiblement plus proximaux réalisés sous un régime hydrodynamique plus fort, au sommet.

Les formes en voie de déroulement ou enroulées, et les formes droites de nodosariidés, sont, en moyenne, en proportion égale de la base au sommet.

-Niveau 6

La dolomitisation amorcée dès le banc PJ 78 du niveau sous-jacent, atteint son maximum d'intensité à la base de la barre de calcaires bioclastiques (PJ 85-86). Par analogie avec les faciès observé dans le Dogger de Bourgogne, nous pouvons penser que ce phénomène est lié à une émersion. Le magnésium nécessaire à cette dolomitisation "restreinte" [Purser, 1975, p. 320], a pu être apporté par la calcite magnésienne des débris d'échinodermes, représentant l'essentiel des bioclastes dans les lames minces.

Deux faciès, très voisins l'un de l'autre, alternent de PJ 85 à PJ 96 :
- une biomicritique (packstone/grainstone) à petits bioclastes émoussés de crinoïdes, et grands bioclastes à cassure fraîche de lamellibranches, brachiopodes et serpules;
- une biomicrosparite (grainstone) dont le cortège bioclastique est identique au précédent.

Ces deux faciès peuvent localement se transformer en dolobiomicrosparite ou dolobio microlithite suivant l'intensité de la dolomitisation.

Le taux de quartz, plus faible que dans le niveau 5, est relativement constant (1 à 3 %, excepté PJ 88, 7 %).

Les foraminifères sont moins nombreux que dans le niveau 5, mais les formes enroulées de nodosariidés sont relativement plus présentes (diversité spécifique plus grande).

Les microfaciès de la partie supérieure du niveau 5, et ceux du niveau 6, semblent issus d'un processus sédimentaire très voisin. Dans ce contexte de plateforme ouverte, l'énergie hydrodynamique apparaît plus forte dans le niveau 6 que dans le niveau 5. Par contre, il est très difficile de se prononcer à partir de seules données micropétrographiques sur une évolution de la profondeur des dépôts. Seul la dolomitisation "restreinte" des faciès de la base de ce niveau pourrait nous indiquer un contexte sédimentaire proche de l'émersion.
- Niveau 7

Une rupture micropétrographique nette est, une fois encore, impossible à mettre en évidence au passage du niveau 6 au niveau 7. Les microfaciès sont pratiquement les identiques de PJ 91 à PJ 98 : biomicrite (packstone/grainstone), ou biomicrosparte (grainstone), à bioclastes de crinoïdes dominants, de lamellibranches, de brachiopodes et de serpules. La taille des bioclastes semble toutefois diminuer dans le niveau 7. Les quartz représentent toujours de 1 à 3 % de la surface de la lame minee. La dolomitisation peut être localement très intense, comme dans les bancs sous-jacents. Les foraminifères sont nettement moins nombreux que dans les niveaux 5 et 6, et sont en majorité des formes droites de nodosariidés, à remplissage pyriteux.

A partir du PJ 99, deux faits importants sont à signaler :
- une arrivée massive de quartz anguleux à subanguleux très fins. Ils représentent 12 à 15 % de la surface de la lame minee pour ce prélèvement. Cette proportion varie de 7 à 30 % dans les bancs sus-jacents;
- l’apparition des premiers Verneuilinoides mauritii associés aux Glomospira sp., qui seront présents jusqu’à la fin de la Formation de la Barre à Pecten.

Il n’existe pas de modification bathymétrique apparente dans le microfaciès pétrographique, mais nous observons le développement d’une décharge détritique de quartz silteux. Nous émettons l’hypothèse qu’un hydrodynamisme trop élevé ne permettait pas jusqu’alors le dépôt de ces particules très fines. Cette baisse de l’énergie des eaux peut être mise en relation avec un contexte sédimentologique de plus en plus distal ou plus protégé.

- Conclusion

Chacune des quatre séquences micropétrographiques mises en évidence dans le niveau 5 nous indiquent des dépôts de plus en plus proximaux et énergétiques de la base au sommet. Nous observons d’ailleurs la même évolution sur l’ensemble du niveau 5. Le microfaciès du niveau 6, très voisin de celui de la fin du niveau 5, semble toutefois montrer une énergie hydrodynamique plus forte.

Le niveau 7 est caractérisé par une décharge très importante de quartz silteux et une diminution de la taille des bioclastes qui nous indiquerait un domaine de dépôts plus distal ou protégé, et moins agité.
B/ Données minéralogiques

a/ Argiles (Fig. 18, p. 78)

Cette formation peut être subdivisée en 2 parties :
- une partie inférieure (PJ 47 à 91), marquée par la dominance de l’illite, des interstratifiés et de la kaolinite (difféctrogramme 8);
- une partie supérieure (PJ 92 à 104) où la kaolinite est absente (difféctrogramme 9).

- Niveau 5
Dans le détail, on note à la base de ce niveau une richesse relative en interstratifiés 14-14 (PJ 47 à 51). PJ 49 contient essentiellement des interstratifiés 14-14 avec une nette tendance à la régularité. Il est vraisemblable que cet intervalle devait être à l’origine riche en smectite, par un effet diagenétique, celle-ci a été transformée en illite ou vermiculite.

La chlorite n’est présente significativement qu’au niveau de deux prélèvements PJ 62 et PJ 76, et représente respectivement 55 et 20 % des argiles. PJ 62 contient une chlorite très proche de la berthiérette (comme sur le niveau 2b).

Les proportions en illite et illite/smectite sont assez homogènes.

Le pourcentage de vermiculite varie considérablement suivant l’origine, argileuse ou calcaire, des échantillons (valeurs fortes pour les interbacs argileux).

On observe un pic de kaolinite en PJ 52.

Mis à part les pics de chlorite et de kaolinite, la minéralogie du niveau 5 est assez homogène.

- Niveau 6
L’absence d’argiles dans le premier prélèvement situé au-dessus de la discontinuité I-C 2, exprime de façon nette sur les graphiques, le passage du niveau 5 au niveau 6.

Dans les prélèvements sus-jacents, l’illite et l’illite/smectite dominent les assemblages argileux ; la chlorite et la vermiculite sont absentes.

Les interstratifiés 14-14 ne sont présents que de PJ 86 à PJ 91.

La teneur en kaolinite décroît régulièrement depuis le banc PJ 82 jusqu’au banc PJ 91, puis devient nulle au-dessus. Ce phénomène correspond à une coupure minéralogique majeure que l’on ne peut expliquer que par une variation importante des conditions paléobathymétriques ou paléoclimatiques (cf. supra).

- Niveau 7
Il n’existe pas de différence minéralogique très nette entre ce niveau lithologique et le précédent. Les assemblages argileux ne sont plus composés d’illite et de illite/smectite.
La chlorite, les interstratifiés, la vermiculite et la kaolinite sont, à l'exception de 1 ou 2 prélèvements, totalement absents.

On observe toutefois la formation d'un pic d'illite/smectite au niveau de la discontinuité 1-C 3.

- Conclusion

Une des principales informations apportée par l'étude minéralogique est la diminution du taux de kaolinite à partir du prélèvement PJ 88 et sa disparition après PJ 91. Ce phénomène doit être mis en relation avec un changement majeur du paléoclimat (passage d'un climat humide à un climat aride) (Delavenne et al., 1989).

Trois prélèvements montrent des caractéristiques différentes des autres par un pourcentage très élevé en chlorite (proche de la benthique) pour PJ 62 et 76, ou en kaolinite pour PJ 52 Deconinck, 1993).

Les niveaux 6 et 7 sont très pauvres en argiles et ne contiennent plus que de la kaolinite (base du niveau 6) de l'illite et de l'illite/smectite. On observe un phénomène identique dans les faciès régressifs du Purbachien où la smectite est "illitisée" par des alternances de périodes humides (eaux marines) et de périodes sèches (Deconinck & Strasser, 1987; Deconinck et al., 1988).

Le prélèvement sus-jacent à la discontinuité 1-C 2 ne contient pas d'argiles.

b/ Quartz (Fig. 19, p. 79)

- Niveau 5

La courbe des valeurs du taux de quartz est très irrégulière. Il est difficile de dégager une tendance générale. Nous pouvons signaler que l'évolution des teneurs présente de fortes analogies avec celle du niveau 2. En effet, les pics ou maxima relatifs ont la même intensité et les prélèvements ne contenant pas de quartz sont fréquents. Ce phénomène semble caractéristique des alternances marne-calcaires, car tous les échantillons des niveaux lithologiques marneux (niveau 1 et 4) renferment du quartz.

- Niveau 6

La quantité de quartz augmente très nettement au passage de la discontinuité 1-C 2. Hormis PJ 87 et PJ 96 qui ne contiennent pas de quartz, les prélèvements présentent des concentrations assez homogènes et plus élevées que celles des échantillons de tous les niveaux sus-jacents.

- Niveau 7

Comme nous l'avons observé dans l'étude micropétrographique, l'analyse minéralogique rend compte d'une décharge de quartz très importante dans le niveau 7. Les concentrations y sont beaucoup plus fortes que dans tous les autres niveaux. La partie sommitale (PJ 99 à PJ 104) montre une alternance de prélèvements très riches en quartz (PJ 100 et PJ 102) et de prélèvements relativement moins riches.
- Conclusion

La concentration en quartz est d'abord, dans le niveau 5, équivalente à celle du niveau 2, puis elle augmente légèrement dans le niveau 6, et enfin de façon très importante dans le niveau 7.

C/ Goethite (Fig. 19, p. 79)

- Niveau 5

Ce niveau se caractérise par une alternance de prélèvements moyennement concentrés en goethite et de prélèvements beaucoup moins riches. Ces derniers correspondent, dans la plupart des cas, aux interbancs argileux. Les teneurs semblent augmenter irrégulièrement au sein de chacunes des quatre séquences micropétrographiques (PJ 47 à PJ 59; PJ 60 à PJ 72; PJ 73 à PJ 80 et PJ 81 à PJ 85). L'échantillon PJ 85, situé immédiatement sous la discontinuité I-C 2, possède la concentration en goethite la plus élevée du niveau 5.

- Niveau 6

Les prélèvements sont globalement plus riches que ceux du niveau 5. Les concentrations les plus fortes sont présentes dans les premiers échantillons, PJ 86 et PJ 88. On observe ensuite une décroissance générale du taux de goethite jusqu'à PJ 93, puis une augmentation jusqu'à PJ 96.

- Niveau 7

Le passage de la discontinuité I-C 3 se marque par une baisse non significative des teneurs de PJ 96 à PJ 97. Au-dessus, PJ 98 et PJ 99 sont les échantillons les plus concentrés de toute la Formation de la Barre à Pecten. Les teneurs décroissent ensuite jusqu'à PJ 102, puis réaugmentent jusqu'au dernier prélèvement PJ 104.

- Conclusion

Dans la Formation de la Barre à Pecten, la concentration en goethite suit la même évolution que celle du quartz. La moyenne des pics d'intensité est assez faible (et voisine de celle du niveau 2b) pour le niveau 5. Elle augmente nettement dans le niveau 6, puis plus sensiblement dans le niveau 7.

C/ Données géochimiques (Fig. 20, p. 82)

- Niveau 5

Les courbes en teneurs en Mn et Mg montrent des fluctuations d'un prélèvement à l'autre beaucoup moins importantes que celles du Sr et du Fe.
La concentration en Mn décroît régulièrement de PJ 47 à PJ 85. Celle du Mg reste grossièrement constante excepté un pic très important pour le prélèvement marneux PJ 60. Ce dernier enregistre d’ailleurs une teneur très élevée en Sr (valeur maximum dans la Formation de la Barre à Pecten), en Fe et Mn (maxima relatifs).

La proportion de Fe dans les échantillons varie considérablement d’un point de prélèvement à l’autre. Ce phénomène semble très lié au faciès argileux ou calcaire des gisements (valeurs fortes quand le pourcentage de CaCO₃ est élevé et valeurs faibles dans le cas contraire). Des pics de concentration en Fe apparaissent dans les échantillons PJ 62, PJ 76 et PJ 82.

Les teneurs en Fe et Sr sont plus importantes à la partie inférieure des parasequences, mises en évidence par l’étude micropétrographique, qu’à leur partie supérieure.

- **Niveau 6**

La concentration en Mn, très régulière, continue à décroître. Celle du Sr est globalement moins importante que dans le niveau 5. La courbe de la teneur en Mg semble avoir une évolution cyclique :

 - baisse des valeurs de PJ 86 à PJ 90;
 - croissance de PJ 91 à PJ 96.

Le passage de la discontinuité se marque par une augmentation relative des proportions en Mn, Fe et Sr et par une décroissance de celle du Mg.

- **Niveau 7**

La teneur en magnésium qui baisse régulièrement depuis la base de la Formation de la Barre à Pecten est très faible, mais elle reste stable sur toute l’épaisseur du niveau 7. La concentration en Sr diminue globalement (mis à part les deux pics enregistrés au niveau de PJ 97 et PJ 102).

La proportion en Fe fluctue toujours de façon relativement importante (bien que les échantillons soient exclusivement calcaires et très riches en CaCO₃). Le Mg semble globalement plus présent que dans le niveau 6.

Le passage de la discontinuité 1-C 3 s’exprime par une augmentation nette de la concentration en Fe et dans une moindre importance de celle du Sr.

- **Conclusion**

La concentration en manganèse diminue progressivement du début à la fin de la Formation de la Barre à Pecten. Les teneurs en fer, strontium et magnésium sont beaucoup plus fluctuantes d’un prélèvement à l’autre que celles du manganèse. Les concentrations de ces quatre éléments chimiques ne varient pas considérablement dans les trois niveaux lithologiques de la formation. Seules la diminution de la proportion en strontium du niveau 5 au niveau 6, et l’augmentation de celle du magnésium du niveau 6 au niveau 7, sont...
significatives. Comme dans les résultats de l'étude minéralogique, les prélèvements PJ 62, PJ 76 et PJ 82 se singularisent ici par une concentration en fer plus importante que les autres échantillons du niveau 5.

D/ Données palynologiques (Tab. 2, p. 84)

- **Niveau 5**
 Le prélèvement PJ 77 possède un palynofaciès beaucoup moins riche que les précédents à la fois en nombre d'individus et d'espèces :
 - pollens, 7 espèces;
 - spores, 3 espèces;
 - Dinoflagellés, 3 espèces;
 - algues marines, 1 espèce (*Microcodium*).

 Nous pouvons noter un appauvrissement de la microflore par rapport à tous les autres échantillons. La présence plus abondante de *Circumpolles (Classopolis)* produit par des végétaux réputés xérophytes, pourrait être l'indice d'un climat plus aride. Les *Classipolis* appartiennent en effet à la famille de *Cheirolepidaceae*, végétaux de climat sec très répandus au mésozoïque.

- **Niveau 6 et Niveau 7**
 Les prélèvements PJ 94 et PJ 101 sont aphytiques.

III. 2. 3. Analyse en Composantes Principales des données de la minéralogie des argiles

L'analyse en composante principale est fondée sur les données brutes de l'analyse minéralogique des 102 échantillons de la coupe de Loubressac-Lapoujade.

8 variables sont étudiées dont 6 actives (% de chlorite, d'ililite, d'ililite/smectite, d'interstratifié 14-14, de vermiculite et de kaolinité) et 2 supplémentaires (teneur en goethite et en quartz). Les variables goethite et quartz sont considérées comme unités supplémentaires car les résultats de l'analyse minéralogique nous donne une intensité des pics de diffraction et non un pourcentage, comme c'est le cas pour les argiles.

- **Pourcentage d'inertie des 3 premiers axes factoriels** :

 \[F_1 : 31.8 \% \quad F_2 : 23.8 \% \quad F_3 : 18.7 \% \]
Figure 25 :
Coupe de Loubressac-Lapoujade.
Figuration des variables
de l'analyse minéralogique
dans les plans factoriels F_1-F_2, F_1-F_3 et F_2-F_3.

-109-
Figure 26 :
Coupe de Loubressac-Lapoujade.
Variation des valeurs des niveaux de prélèvements sur l'axe F1 de l'A.C.P.
Figure 27 :
Coupe de Loubressac-Lapoujade.
Variation des valeurs des niveaux de prélèvements sur l'axe F2 de l'A.C.P.
Figure 28a :
Coupe de Loubressac-Lapoujade.
Variation des valeurs des niveaux de prélèvements sur l'axe F3 de l'A.C.P.
Figure 28b : Coupe de Loubressac-Lapoujade.
Figuration des niveaux de prélèvements dans le plan factoriel $F_1 \times F_2$.

-113-
Pourcentage d'inertie cumulé des 3 premiers axes factoriels : 74.3 %

Contribution des variables sur les différents axes factoriels (Fig. 25, p. 109) :

<table>
<thead>
<tr>
<th></th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/S</td>
<td>47.8 %</td>
<td>Vermiculite: 45.1 %</td>
<td>14-14: 45.5 %</td>
</tr>
<tr>
<td>Illite</td>
<td>43.1 %</td>
<td>Kaolinite: 39.7 %</td>
<td>Chlorite: 45.2 %</td>
</tr>
</tbody>
</table>

Les contributions les plus significatives sont fournies par les variables I/S et illite sur l'axe F₁, les variables vermiculite et kaolinite sur l'axe F₂, et les variables chlorite et interstratifiés 14-14 sur l'axe F₃. La représentation de ces 6 variables dans les plans factoriels F₁-F₂, F₁-F₃ et F₂-F₃ nous montre que :
- l'I/S et l'illite sont corrélées négativement avec l'axe F₁;
- la vermiculite et la kaolinite sont aussi corrélées négativement avec l'axe F₂);
- les interstratifiés 14-14 sont corrélés négativement avec l'axe F₃ et la chlorite positivement.

Variations des valeurs des niveaux de prélèvement sur les 3 premiers axes factoriels

La courbe de l'axe F₁(Fig. 26) distingue assez nettement les différents niveaux lithologiques. Les variations de la courbe sont d'autant plus fortes que les différences lithologiques entre deux niveaux successifs sont marquées (alternance calcaires-marnes et calcaires oolithiques) :
- baisse de la courbe du niveau 3 au niveau 4 (discontinuité calcaires-marnes);
- augmentation de la courbe du niveau 4 au niveau 5 au passage des marnes du Membre de Lapoujade à l'alternance calcaires-marnes de la Formation de la Barre à Pecten;
- augmentation de la courbe du niveau 5 au niveau 6 (alternance calcaires-marnes à calcaires massifs).

Les discontinuités sédimentaires de type Intra-Calcaires ou Calcaires-Marnes sont très significativement marquées par des augmentations ou des baisses brutales de la courbe (I-C 1, C-M et I-C 2) ou par des inversions de tendance (I-C 2 et I-C 3).

Au contraire, la courbe reste constante au passage des discontinuités de type intra-Marnes. Ce sont donc les niveaux 3, 6 et 7 qui s'individualisent le mieux sur l'axe F₁.

Sur l'axe F₂ (Fig. 27), les variations lithologiques des différents niveaux étudiés sont comme précédemment très visible mais il semble ici ici que ce sont les passages des marnes franches aux calcaires, et aux alternances calcaires-marnes (passage Niveau 1 - Niveau 2 et Niveau 3 - Niveau 4) qui sont les mieux marqués.

Les variations de la courbe au niveau des discontinuités sont beaucoup moins nettes que pour l'axe F₁, excepté les discontinuités C-M et I-C 1.

-114-
Nous pouvons par contre proposer à titre d'hypothèse une corrélation négative de l'axe F₂ avec l'espace disponible:

- baisse de la courbe et donc augmentation de l'espace disponible pendant les niveaux 1 et 4a;
- hausse de la courbe et donc diminution de l'espace disponible pendant les niveaux 2, 3, 4b, 5 et 6.

Les différences lithologiques sont beaucoup moins visibles sur l'axe F₃ (Fig. 28A) que sur les autres axes exceptés les passages du niveau 4 au niveau 5. Cet axe étant fortement corrélé avec la variable chlorite, les fortes variations de la courbe en PJ 17, 53, 62 et 77 reflètent les pics de chlorite observés à ces niveaux (Fig. 18, p. 78).

- Figuration des piseMENTS dans le plan factoriel F₁-F₂ (Fig. 28b)

L'étude de cette figure confirme les interprétations des axes F₁ et F₂. Les niveaux de prélèvements des niveaux 3, 6 et 7 sont très excentrés dans le plan factoriel. Le niveau 3 d'une part et les niveaux 6 et 7 d'autre part s'opposent très nettement sur l'axe F₁ alors qu'ils présentent des valeurs voisines sur l'axe F₂.

En conclusion, cette analyse en composantes principales permet d'individualiser de façon très nette les échantillons des niveaux 3, 6 et 7. Sur les axes factoriels F₁ et F₂, les discontinuités sédimentaires I-C 1, C-M, I-C 2 et I-C 3 sont très significativement marquées. Cette observation est d'un intérêt très important car les discontinuités de type Intra-Calcaires (en particulier I-C 2 et I-C 3) sont les plus difficiles à mettre en évidence sur le terrain ou en micropétrographie.

III. 3 LES COUPES ANNEXES

Les études mineralogiques, géochimiques et palynologiques n'ayant été réalisées que sur la coupe-type de Loubressac-Lapoujade, l'analyse des coupes annexes n'est fondée que sur les données sédimentologiques (structures et figures sédimentaires, et micropétrographie), et les données micropaléontologiques (formes dégagées dans les environnements marneux du Membre des Argilites grises et du Membre de Lapoujade). Cette analyse a été réalisée unité lithostratigraphique par unité lithostratigraphique, et niveau lithologique par niveau lithologique. Les résultats seront ensuite confrontés à ceux de la coupe de Loubressac-Lapoujade afin de montrer les variations spatiales des paléo-environnements de notre secteur d'étude.
III. 3. 1. La Formation de Valeyres

III. 3. 1. 1 Le Membre des Argilites grises

A/ Données sédimentologiques

al Figures et structures sédimentaires

Gintrae (Fig. 8, p. 42)
- Niveau 1
Le seul niveau calcaire (GI 16) de cette série marneuse homogène se présente sous la forme d'un banc de nodules ou de miches à structure concentrique ("pelure d'oignons"), certainement d'origine diagénétique.

- Niveau 2a
Comme à Loubressac-Lapoujade, les bancs gréseux centimétriques (5 à 15 cm) ont des surfaces basales et sommitales planes. Leur stratification est horizontale et parallèle. On observe à l'intérieur des bancs des laminations fines à moyennes. Celles-ci sont d'abord planes et parallèles (GI 33, GI 34 et GI 36), puis obliques, planes et alternées au sommet (GI 37, GI 39 et GI 41).
Ces dépôts se sont formés au niveau de la limite d'action des vagues de tempêtes, en domaine d'offshore inférieur (de GI 10 à GI 36, laminations planes et parallèles), puis en domaine d'offshore supérieur distal (GI 37 à GI 50, laminations obliques planes et alternées) qui ont subi l'action des vagues de tempêtes.

Magnagues (Fig. 9, p. 44)
L'alternance de marnes, de calcaires gréseux et de calcaires francs a été rapportée en raison de son lithofaciés au niveau 2a. Du point de vue sédimentologique, la stratification des bancs gréseux centimétriques à décimétriques, la présence de fines laminations en leur sein confirme cette interprétation. La seule différence notable avec le même niveau 2a de Loubressac-Lapoujade réside dans la présence de bancs franchement carbonaté (MG 12 et MG 18). Le banc MG 18 qui disparaît à l'échelle de l'affleurement sur quelques mètres de l'Ouest vers l'Est, peut suggérer l'existence d'un dispositif en on-lap.
Nous considérons que ces dépôts se sont réalisés dans un milieu de sédimentation comparable à celui du niveau 2a des coupes précédemment décrites : offshore supérieur médian à distal.
Puy d'Issolud (Fig. 8, p. 42)
- **Niveau 1**
 Aucune figure sédimentaire.

- **Niveau 2a**
 L'alternance marnes-calcaires gréseux possède les mêmes caractères sédimentologiques qu'à Loubressac-Lapoujade ou Gintrac. Les bancs gréseux sont toutefois d'épaisseur moindre (10 cm au maximum). Les laminations obliques planes et alternées, identifiées dans la partie supérieure du niveau 2a à Gintrac, sont, soit absentes, soit situées stratigraphiquement plus haut dans la série au Puy d'Issolud.
 Ces dépôts peuvent être attribués au domaine d'**offshore** transition à la limite entre l'**offshore** inférieur et l'**offshore** supérieur.

Turenne (Fig. 10, p. 46)
- **Niveau 2**
 Les structures sédimentaires sont ici différentes de celles rencontrées dans les autres coupes. Les surfaces de base et de sommet de bancs, au contact calcaires-marnes sont généralement très onduleuses. Les limites entre les bancs de calcaires gréseux et de calcaires argileux sont beaucoup moins faciles à observer en raison d'un changement progressif de faciès. Le banc TU 15 présente un caractère noduleux très affirmé. Les bancs de calcaires gréseux TU 17, TU 18 et TU 19, sont parcourus de fines laminations et ont ainsi un aspect sédimentologique identique à celui du niveau 2a dans les autres affleurements (**offshore** supérieur médian à distal).
 Les bancs calcaires à surfaces basales et sommitales onduleuses sont interprétés comme de tempestites formées dans un domaine de sédimentation plus proximal.
 A Turenne, Les dépôts du Membre des Argilites grises évolueraient donc d'un environnement d'**offshore** supérieur médian (TU 10 à TU 15; bancs calcaires et bancs marneux à surfaces planes et parallèles, ou banc noduleux), à un environnement d'**offshore** supérieur plus distal (TU 16 à TU 22; bancs de calcaires gréseux à fines laminations) et enfin à un domaine d'**offshore** supérieur plus proximal (TU 23 à TU 29; bancs calcaires plus épais qu'au-dessous, à surfaces onduleuses).

Miers et Alignac (Fig. 11, p. 48)
 L'alternance de bancs de calcaires argileux ou non, noduleux, pseudonoduleux, ou à surfaces inférieures et supérieures onduleuses, présentent les mêmes caractéristiques sédimentologiques que celle du niveau 2b à Loubressac-Lapoujade. Les interbancs marneux sont toutefois beaucoup plus dilatés.
Nous interprétons ces dépôts comme des tempestites distales formées dans un environnement d'offshore supérieur plus distal qu'à Loubressac-Lapoujade et dans les autres coupes.

Conclusions

Les figures et structures sédimentaires du niveau 2a de ces différentes coupes sont pratiquement identiques à celles décrites à Loubressac-Lapoujade. Les laminations obliques planes et alternées des bancs de calcaires gréseux, observées à Gintrac dans la partie supérieure du niveau 2a ne sont pas communes à Loubressac-Lapoujade. Elles sont soit situées au niveau de la lacune d'observation soit absentes. Cette lamination oblique nous indique un domaine de sédimentation soumis à l'action des vagues de tempêtes (offshore supérieur distal).

Les variations latérales les plus nettes sont visibles au niveau des coupes de Miers et Alvignac (niveau 2b) au sud, et Turenne au nord (niveaux 2a et 2b).

A Miers et Alvignac, l'alternance marnes/calcaires argileux du niveau 2b présente des bancs de calcaires plus noduleux et des interbancs marnieux beaucoup plus dilatés qu'à Loubressac-Lapoujade et indique ainsi un domaine de sédimentation de plus en plus distal de Loubressac-Lapoujade vers Miers et Alvignac.

A Turenne, seul l'intervalle TU 16 à TU 22 possède des caractéristiques voisines du niveau 2a des autres coupes, mais il est d'une épaisseur beaucoup plus réduite. Les ensembles TU 10 à TU 15 et TU 23 à TU 29 ont des caractéristiques proches de celles du niveau 2b.

b/ Micropétrographie

Gintrac (Fig. 8, p. 42)

- Niveau 1

L'étude micropétrographique de cette unité lithologique essentiellement marnreuse s'est limitée à l'examen des lames minces de deux surfaces particulières.

. GI 16 : niveau de meules calcaires, est une biomicrite (wackestone/packstone) à bioaccumulation de bioclastes, de lamellibranches, de gastéropodes, d'algues et de crinoïdes. Les ostracodes et les foraminifères sont présents en petits nombres. Les traces de fouissage sont importantes. Les quartz détritiques représentent de 3 à 5 % de la surface de la lame mince.

. GI 24' : niveau de marnes indurées, est une biomicrite (wackestone/packstone) gréseuse. Les gros bioclastes sont absents. Les nodosariidés sont très peu nombreux. Le quartz silex représente 10 % de la surface de la lame mince.

C'est une série marnreuse de domaine marin ouvert en plateforme non barrée et subtidale. L'énergie est faible.
Niveau 2
Dans le niveau 2, deux faciès alternent de GI 33 à GI 50 :
- les bancs GI 33, 34, 36, 37, 39, 40, 41 et 44 sont des biomicrites (wackestone/packstone) à matrice argileuse et bioclastes de crinoïdes dominants, auxquels s'ajoutent des bioclastes de lamellibranches, d'ostracodes et de nodosariidés. Les bioclastes de lamellibranches sont de deux types, les grands sont frais à cassure franche, les petits sont morcelés ;
- les bancs GI 43, 45, 46, 47, 48, 49, et 50 sont des biomicrites gréseuses (packstone/grainstone). Les quartz représentent de 30 à 40 % de la surface de la lame mince. Les gros bioclastes sont absents. Nous observons seulement des microbioclastes de nodosariidés, de crinoïdes et d'ostracodes.
Les traces de fouissages sont nombreuses. Les foraminifères sont en majorité représentés par des formes droites de nodosariidés à remplissage pyritieux. Il n'existe pas de différence significative avec les microfaciès décrits dans le niveau 2a des autres coupes.

Puy d'Issolud (Fig. 8, p. 42)
Le faciès gréseux (Pl 23 à Pl 41) présente les mêmes caractéristiques que ceux du niveau 2a à Loubressac-Lapoujade. La taille et le pourcentage des quartz détritiques sont les mêmes. Les bioclastes très minces sont plus nombreux qu'à Loubressac-Lapoujade. Les foraminifères sont représentés de la même façon par des formes droites de nodosariidés, mais non pyritieux. La taille des grains de quartz n'évolue pas de la base au sommet du niveau, contrairement aux observations faites à Loubressac-Lapoujade.

Magnagues (Fig. 9, p. 44)
De MG 9 à MG 15, les bancs sont formés d'un sable argileux résultant de deux types d'apport :
- continental, matérialisé par des quartz non triés qui représentent 30, 40 à 50 % de la surface de la lame mince ;
- marin, bioclastes remaniés de crinoïdes principalement, de lamellibranches (rares), et nodosariidés de forme droite (la proportion de nodosariidés à remplissage pyritieux est moins importante que pour les autres coupes).
Les traces de fouissage sont importantes. Cet intervalle stratigraphique peut être aisément rattaché à la base du niveau 2 (alternance marnes/grès argileux).
Le banc MG 17 contient un nombre plus important de bioclastes de crinoïdes morcelés et une densité en foraminifères très supérieure aux bancs précédents. Le peuplement, pratiquement monogénérique, est composé de Lingulina sp. (77 foraminifères ont été comptés).
Turenne (Fig. 10, p. 46)

Le Membre des Argilites grises à Turenne présente deux faciès différents :
- TU 11 et TU 12 sont des biomicrites (packstone/grainstone) à bioclastes hétérométriques de crinoïdes, de lamellibranches, de brachiopodes et de nodosariidés. C'est un faciès d'accumulation. Toutes les formes de nodosariidés sont représentées, avec une prédominance des formes droites non pyriteuses. Notons aussi la présence d'Ammodiscus. La quantité de quartz détritique représente 2 à 3 % de la surface de la lame mince;
- le banc TU 13 possède un faciès intermédiaire. Le nombre de grands bioclastes a chuté considérablement. La quantité de quartz a augmenté, et représente 10 % de la surface de la lame mince;
- de TU 14 à TU 28, les plaques minces montrent une biomicrite très gréseuse. Il n'y a pas de grands bioclastes mais uniquement des microbioclastes (crinoïdes). Les foraminifères sont en très grande majorité, contrairement à TU 11 et TU 12, des formes droites de nodosariidés à remplissage pyriteux. Le taux de quartz varie suivant les lames de 30 à 50 % de leur surface.

Miers

Les niveaux de calcaires argileux, noduleux, situés sous le Membre de Rieuzaux, sont des biomicrites (packstone) à bioclastes de crinoïdes dominants, de lamellibranches et de brachiopodes. Le taux de quartz détritique est en moyenne de 3 % pour tous les bancs, de MI A à MI I. Les microfaciès des bancs MI D et MI I possèdent des plages de biomicrosparite. L'énergie augmente donc dans l'ordre stratigraphique. Les bioclastes (petits ou grands) des derniers échantillons sont très morcelés et emoussés. Le remaniement et la ferruginisation sont, comme à Loubressac-Lapoujade, très intenses dans la partie supérieure du Membre des Argilites grises.

Il n'existe pas de différence fondamentale avec les microfaciès du niveau 2b des autres coupes. Seule la taille plus réduite des bioclastes, et leur aspect très remaniés, peuvent nous indiquer un domaine de dépôt plus distal que celui de Loubressac-Lapoujade, mais la logique sédimentaire reste identique.

Alvignac (Fig. 11, p. 48)

La variation des microfaciès des bancs de calcaires argileux de la partie supérieure du Membre des Argilites grises, est plus importante que dans les autres coupes.

De AL 30 à AL 34, le microfaciès passe progressivement :
- d'une biomicrite (packstone/grainstone) à bioclastes de crinoïdes ovoïdes dominants, de brachiopodes, de lamellibranches, d'algues et de serpules (pelotons de serpuliens, AL 32), et extraclastiques (issus de l'érosion des bancs sous-jacents);
- à une biomicrosparite (grainstone), possédant les mêmes bioclastes, mais de taille supérieure.

De AL 35 à AL 38, le microfaciès est une biomicrite (wackestone/packstone à packstone). La taille des bioclastes a considérablement augmenté de AL 35 à AL 37, puis diminué en AL 38. La lame mince de l'échantillon AL 36 montre la présence d'agrégats algaires à débris d'échinodermes (extraclastes). Le taux de quartz est très faible (1%).

A partir de AL 39, l'apparition de microfaciès gréseux et moins énergétiques souligne une rupture sédimentologique. AL 39 est une biopelmicrite (wackestone) gréseuse (7 à 10 % de quartz). Le nombre de bioclastes (crinoïdes essentiellement) a brutalement diminué. Ensuite de AL 40 à AL 43, les biomicrites (packstone) gréseuses ont un taux de quartz qui varient entre 10 et 20 %. Les petits bioclastes de crinoïdes sont remaniés contrairement aux grands bioclastes de lamellibranches, de brachiopodes, de serpules et d'algues. L'oxydation est plus intense qu'au-dessous. Les foraminifères sont surtout présents dans les faciès gréseux; ils correspondent surtout à des formes droites de nodosariidés à remplissage pyriteux. Notons tout de même l'apparition de grands nodosariidés de formes enroulées ou en voie de déroulement, dans les bancs AL 42 et 43.

Les faciès de la moitié inférieure (AL 30 à AL 38) sont très voisins de ceux de Miers (MI A à MI D) et de ceux du niveau 2b des autres coupes. Par contre, la décharge de quartz observée dans la moitié supérieure du Membre des Argilites grises n'a pas été dans les autres coupes.

Conclusions

Les microfaciès des niveaux 2a et 2b sont très voisins de ceux étudiés à Loubressac-Lapoujade.

La taille plus réduite des bioclastes et le remaniement plus marqué du microfaciès à Miers et Alvincac nous indique un domaine de sédimentation sensiblement plus distal du Nord vers le Sud.

B/ Données micropaléontologiques (matériel dégagé)

a Ostracodes

Gintrac (Fig. 8, p. 42)

De GI 10 à GI 15, une seule espèce d'ostracodes *Ogmoconchella lapoujadensis* est généralement. Seul l'échantillon GI 12 qui en contient trois. Ce très faible nombre d'espèces et la densité d'ostracodes très réduite nous indique que les conditions de vie peu supportables par l'ostracofaune. L'espèce *Ogmoconchella lapoujadensis* (adaptée à des milieux extrêmes) trouve par contre à ce niveau des conditions environnementales optimales à son développement.
Le faible nombre d'espèces ne nous permet pas d'apporter de renseignements précis en termes de paléoenvironnements. Nous pouvons juste noter que les conditions de vie sont certainement très stressantes pour l'ostrecofaune. La quantité assez importante de valves isolées nous montre que l'agitation du milieu est variable, parfois forte.

De GI 16 à GI 28, la diversité spécifique est globalement plus forte (2 à 6 espèces) que dans les échantillons sous-jacents, d'un gisement à l'autre, elle fluctue régulièrement entre des valeurs fortes et faibles. Le nombre d'individus par niveau de prélèvement est aussi beaucoup plus important qu'au-dessous. Il varie d'une dizaine pour GI 23 et GI 25, à plus de 850 pour GI 16. La présence, dans l'échantillon GI 24, de l'espèce Liastina lanceolata marquerait un net approfondissement du milieu dans la partie médiane de cette série de prélèvements.

Le milieu, infralittoral interne, est globalement moins profond que dans la précédente unité. Il semble, en outre, beaucoup plus riche en nourriture. La baisse générale de la bathymétrie se marque par une absence des ostracodes du genre Polycoste, par une diversité forte associé à un grand nombre d'individus dans chaque échantillon. L'agitation du milieu est faible car le rapport carapaces/valves isolés est élevé (70 %).

De GI 29 à GI 47, la diversité spécifique est moindre que dans l'intervalle précédent, mais elle reste plus élevée que dans la première unité (1 à 5 espèces). Celle-ci décroît lorsqu'on s'élève dans la série. La densité d'ostracodes dans les prélèvements est, elle aussi, moindre (25 au maximum). Les disparitions d'espèces sont assez nombreuses (elles atteignent un taux de 44 %). On ne relève aucune apparition. A la partie supérieure du niveau 2 (alternance marneux-calcaires gréseux) les conditions du milieu se dégradent, comme en témoignent à la fois la chute du nombre d'espèces et d'individus par échantillon, et le taux de mortalité.

Turenne (Fig. 10, p. 46)

Seuls les échantillons TU 13, TU 14, TU 16 et TU 29 contiennent des ostracodes déterminables. Les stades larvaires appartenant aux genres Ogmoconcha et Ogmochonchella constituent les 99 % de la population.

Conclusions

A Gintrac, l'étude des ostracodes permet de montrer une évolution verticale des paléoenvironnements (chute de la bathymétrie) mais n'indique pas de variations latérales du contenu micropaléontologique des gisements.
Le passage du niveau 1 au niveau 2a se marque par une chute importante du nombre d'espèces et d'individus.

À Turenne, au Nord, l'accumulation de stades juvéniles dans les échantillons et l'absence pratiquement générale d'adultes signalent des conditions de sédimentation ou environnementales particulières : soit un tri de la population par des courants, soit un mode de vie différent entre adultes et larves.

La dégradation des conditions du milieu à partir du niveau 2a, en liaison avec l'évolution de la diversité spécifique (en baisse), du nombre d'individus et de la composition des associations, s'amplifie et se déplace du Sud-Ouest vers le Nord-Ouest, de Loubressac-Lapoujade à Gintrac, au Puy d'Issolud et à Turenne.

b/ Foraminifères benthiques

Comme à Loubressac-Lapoujade, la microfaune benthique ne permet pas d'apporter des renseignements complémentaires d'un point de vue paléécologique ou paléoenvironnemental, que ce soit à Gintrac, au Puy d'Issolud ou à Turenne.

C/ Conclusions

- Evolution dans le temps

Sur toutes les coupes étudiées, et plus particulièrement celles de Loubressac-Lapoujade et de Gintrac (les plus complètes), nous observons la même évolution des paléoenvironnements dans le Membre des Argilites grises.

Les marnes du niveau 1 sont attribuées à un domaine d'offshore inférieur de plateforme non barrée, mais aucune variation n'est identifiable en leur sein sur les seules données sédimentologiques, minéralogiques, géochimiques et micropaléontologiques exposées jusqu'ici.

Les dépôts du niveau 2 se sont réalisés dans un domaine d'offshore supérieur médian à distal. L'hydrodynamisme et le détritisme augmentent plus on monte dans la série.

Une tendance régressive des paléoenvironnements est mis en évidence du niveau 1 au sommet du niveau 2b, quelque soit la coupe considérée, dans le Membre des Argilites grises.

- Variations dans l'espace

Dans notre secteur d'étude, les dépôts du Membre des Argilites grises se sont réalisées dans un même domaine d'offshore à Loubressac-Lapoujade, Gintrac et Magnugues. Au Sud, à Miers et Alvignac, les paléoenvironnements sont plus distaux que ceux des coupes précédemment citées, tandis qu'au Nord, à Turenne et Saillac, ils sont plus proximaux.

La polarité d'éloignement des côtes s'établit donc dans le sens Nord-Sud, de la région de Turenne, vers celle de Loubressac-Lapoujade, puis vers celle d'Alvignac.
III. 3. 1. 2 Le Membre de Rieuzał

L'étude lithologique du Membre de Rieuzał a rendu compte d'une variation de sa puissance et de ses caractéristiques sédimentologiques générales (figures et structures sédimentaires...) suivant la situation géographique des coupes considérées. Dans la région de Castelnau (Loubressac-Lapoujade, Puymule, Saint Michel-Loubéjou et La Rouquette) et à Miers, cette unité est très développée et possède quelques figures sédimentaires variées, alors qu'à Saint Laurent-les-Tours, Magnagues, Turenne et Saillac, elle est beaucoup plus réduite, et disposée en bancs décimétriques et réguliers.

A/ Données sédimentologiques

a/ Figures et structures sédimentaires

Castelnau (Pl. 7)
Le Membre de Rieuzał présente sur cet affleurement sa plus grande épaisseur (environ 7.5 m). Il se compose d'un corps massif où la stratification et le litage sont très difficiles à observer. Nous avons quand même pu repérer des stratifications lenticulaires, en aubes et obliques planes et une surface de réactivation. Les caractéristiques sédimentologiques semblent très voisines de celles observées à Loubressac-Lapoujade.

Nous attribuons donc ces dépôts à un domaine de shoreface inférieur en zone subtidale agitée.

Puymule (Pl. 8)
A la base et sur une épaisseur de 2.2 m (PUY 1 et PUY 2), les bancs horizontaux, continus, à surfaces supérieures et inférieures ondulantes et les bancs noduleux de calcaires argileux correspondent à une séquence de tempestites distales déposées en domaine d'offshore supérieur médian.

Au-dessus, de PUY 3 à PUY 4, les bancs noduleux deviennent de plus en plus amalgamés et traduisent ainsi un comblement progressif de l'espace disponible. Nous avons observé la présence de lentilles à laminations en faisceaux (HCS). Au sommet (PUY 5), on observe le brusque développement de structures sédimentaires de type flaser bedding (rides sigmoïdales??). Ces dépôts, d'une épaisseur de 3.8 m, sont attribués à un domaine d'offshore supérieur proximal.
La Rouquette (Pl. 8)
Le dispositif sédimentaire semble, à première vue, très voisin de celui décrit à Puymule. Le triple et le double banc noduleux intercalés de bancs marneux centimétriques (RQ 1-RQ 2) et les bancs à stratification horizontale et parallèle, séparés par des drapages argileux (RQ 3-RQ 4) représentent des dépôts effectués dans un domaine de sédimentation très proche de celui de la base de l'affleurement de Puymule (offshore supérieur médian à distal).

Au-dessus, les conditions d'affleurement sont telles qu'il est difficile d'observer les figures et structures sédimentaires. Au niveau du prélèvement RQ 5, les bancs sont d'épaisseur plus réduite, à surfaces très ondulées et stratifications lenticulaires. Au sommet, de RQ 6 à RQ 7, les bancs semblent encore plus minces et amalgamés.

Nous considérons ces dépôts comme des dépôts d'offshore supérieur proximal.

Saint Michel-Loubéjou (Pl. 9)
Sur cet affleurement d'épaisseur assez réduite (1.6 m), les structures sédimentaires sont plus faciles à examiner, et très homogènes. Le litage oblique en auge est caractéristique. Les surfaces de dépôt sont érosives et concaves vers le haut. Dans chaque auge, les laminations millimétriques à centimétriques ne recoupent pas cette surface.

Le milieu de sédimentation, plus proximal que celui de Puymule ou de La Rouquette, est considéré comme un domaine de shoreface inférieur.

Saint-Laurent-les-Tours (Fig. 12, p. 50)
Le Membre de Rieuzaal est maintenant beaucoup plus réduit en épaisseur qu'au niveau des coupes précédemment étudiées (2 m).
Les structures sédimentaires ne permettent pas d'identifier avec précision le milieu de sédimentation.

Puy d'Issold, Magnagues (Pl. 9), Turenne et Saillac (Fig. 8, 9, 10 et 11)
Sur ces quatre affleurements, le Membre de Rieuzaal présente des structures sédimentaires voisines et une épaissseur décroissante de Magnagues, au Puy d'Issold, à Turenne et Saillac. Les bancs décimétriques de calcaires ont une stratification horizontale et parallèle et des surfaces basales légèrement ondulées. Aucune lamination n'est visible à l'intérieur des bancs.
Cette sédimentation s'est réalisée en domaine d'offshore supérieur médian à distal, en position latérale par rapport aux régions de Loubressac-Lapoujade et de Castelnau, mais plus certainement en position latérale.
Miers

L'affleurement des calcaires ferrugineux du Membre de Rieuval, intensément failli et discontinu, n'a pas permis de dégager une évolution verticale des environnements. La base (niveau 2b?) et le sommet (discontinuité C-M?) du membre n'ont pu être observé.

Malgré cela, une certaine équivalence des structures sédimentaires avec celles de Loubressac-Lapoujade, nous permet d'attribuer ces dépôts à un domaine de shoreface inférieur. Il existait donc, au Sud de notre secteur d'étude, un haut-fond (barre ou dune tidale) équivalent à celui de la région de Loubressac-Lapoujade et Castelnau.

Alvignac (Fig. 11, p. 48)

Au Sud de notre domaine d'étude, les dépôts calcaires du niveau 3 (1.5 m) se composent d'un empiètement de bancs décimétriques, à surfaces supérieures et inférieures très ondulées pouvant entraîner la formation de lentilles (AL 44 à 46), et à stratifications en auge.

Cet ensemble de bancs correspond à une association de tempestites distales déposées en domaine d'offshore supérieur médian à distal, et peut être interprété comme un système chenalisé en position d'avant-barrière par rapport au haut-fond individualisé sur la coupe de Miers.

Conclusions (Fig. 29, p. 127)

Comme à Loubressac-Lapoujade, le Membre de Rieuval est séparé en deux parties différentes au sein de tous les affleurements ponctuels :

- à la base, la partie sommitale du niveau 2b;
- au sommet, le niveau 3.

A Castelnau et à Loubressac-Lapoujade, le niveau 2b est réduit en épaisseur alors que le niveau 3 est très dilaté. Sur les autres coupes, le niveau 2b est aussi épais, sinon plus, que le niveau 3.

Toutes les coupes étudiées dans les régions de Loubressac-Lapoujade, Castelnau et Miers possèdent des dépôts du niveau 2b réalisés en domaine d'offshore supérieur médian à distal.

Les dépôts du niveau 3 indiquent :

- un domaine de shoreface inférieur en zone subtidale agitée à Loubressac-Lapoujade, Castelnau, Saint-Michel-Loubéjou et Miers;
- un domaine d'offshore supérieur proximal à Puymule et La Rouquette.

A l'Ouest (Magnagnes), au Nord (Puy d'Issolud, Turenne et Saillac) et au Sud (Alvignac), le Membre de Rieuval présente des caractéristiques très différentes tant par l'épaisseur que par l'aspect des figures sédimentaires. Ces dépôts stratifiés (offshore supérieur médian à distal) ont été réalisés dans des domaines plus distaux (Alvignac) et/ou
Figure 29 :
Esquisse paléogéographique
du Membre de Rieuzaal
plus latéraux (Magnagnes, Puy d’Issolud, Turenne et Saillac) que ceux de Loubressac-Lapoujade. Pour Saint Laurent-les-Tours, d’un point de vue sédimentologique (figures et structures sédimentaires), il est très difficile de se prononcer sur une position plus proximale ou plus distale du paléomilieu.

- **b**/**Micropépirographie**

Castelnau

Le microfacé du prélèvement réalisé à l’extrême base du Membre de Rieuzaux (CAS 1), est une biomicrite (wackestone/packstone) gréseuse à bioclastes hétérométriques très remaniés de crinoïdes, lamellibranches et brachiopodes. Nous observons la présence d’oolithes ferrugineuses allongées et de gravelles. Ce microfacé **est un peu plus gréseux, mais très voisin de celui observé à Loubressac-Lapoujade** (PJ 23, partie sommitale du niveau 2b). La présence d’oolithes témoignent d’une énergie hydrodynamique plus forte à Castelnau pour un même domaine de sédimentation (proche de l’émerision).

Le microfacé change de façon très significative à partir du deuxième échantillon (CAS 2). Cette oobimicrite (packstone) à plages d’oobiomicrosparite (grainstone) possèdent des bioclastes beaucoup plus grands et frais que ceux du niveau CAS 1. Les oolithes sont entièrement oxydées (les nucléi sont très rarement observables).

Les microfacés sus-jacents sont des oodolobiosparite (grainstone) -CAS 3 et 4- ou des oobiosparite (grainstone) -CAS 5 et 6-. Le cortège bioclastique est le même que celui de l’échantillon CAS 2. Le nombre et la taille des oolithes ferrugineuses sont croissants de CAS 2 à CAS 6. Le microfacé, dolomitisé ou non, présente de très fortes analogies avec celui du même niveau à Loubressac-Lapoujade. La seule différence réside dans la quantité des grains (bioclastes ou oolithes) plus importante à Castelnau qu’à Loubressac-Lapoujade. La diminution du nombre d’oolithes dans le dernier prélèvement (CAS 7) indique une baisse sensible de l’énergie. Un phénomène identique se produit au sommet du Membre de Rieuzaux à Loubressac-Lapoujade (PJ 34). On observe aussi à ce niveau de nombreuses traces de fouissage remplies de micrite et de quartz silteux.

Bientôt l’énergie hydrodynamique semble plus forte à Castelnau, le domaine de sédimentation (barre ou dune sableuse oolithique et ferrugineuse) est le même qu’à Loubressac-Lapoujade.

Puymule

Nous observons dans l’ordre stratigraphique :

- de PUY 1 à PUY 2, une biomicrite (packstone) à bioclastes de crinoïdes dominants, 2 à 3 % de quartz;

-128-
- en PUY 3, une oobiomicrite (packstone/grainstone) à plages d'oobiomicrosparite (grainstone), à bioclastes de crinoïdes, de lamellibranches et de brachiopodes. Les quartz ne représentent plus que 1% de la surface de la lame mince;
- de PUY 4 à PUY 6, une oobiomicrosparite (grainstone) possédant le même cortège bioclastiques que PUY 3. Les faciès sont plus oxydés et contiennent plus d'oolithes. On note la présence d'extraclastes pour le prélèvement PUY 5. Il n'y a plus de quartz.
Le microfaciès de l'échantillon PUY 3 est un intermédiaire entre les microfaciès sus et sous-jacents.
L'énergie augmente de PUY 1 à PUY 4, puis diminue jusqu'à PUY 5.
L'évolution verticale des microfaciès est identique à celle observée sur les coupes précédentes :
- à la base, les deux premiers prélèvements sont les équivalents latéraux des échantillons de la base du Membre de Rieuzal (PJ 23, CAS 1) -domaine marin ouvert infralittoral peu profond;
- au-dessus, les dépôts se sont réalisés dans un environnement de haut-fond oolithique de forte énergie.

La Rouquette
Les observations sont exactement les mêmes que celles énoncées ci-dessus.
Dans la moitié inférieure, les biomicrites (packstone) à bioclastes de crinoïdes dominants, ont un nombre de grands bioclastes de lamellibranches et de brachiopodes qui augmentent de RQ 1 à RQ 5. L'intensité de l'oxydation croît dans le même sens. Cette partie est l'équivalent latéral du sommet du niveau 2b des autres coupes (PJ 23, CAS 1 et PUY 1 et 2).
A partir de RQ 6, nous observons une arrivée massive d'oolithes ferrugineuses. Le microfaciès est ensuite identique aux oobiosparites ou oobiomicrosparites (grainstone) du niveau 3.

Saint Michel-Loubéjou
Les échantillons, uniquement prélévés dans la partie supérieure du Membre de Rieuzal, présentent le microfaciès caractéristique du niveau 3 [oobiosparite (grainstone) à bioclastes hétérométriques de crinoïdes, lamellibranches et brachiopodes].

Saint-Laurent-les-Tours (Fig. 12, p. 50)
Le microfaciès du premier banc (SLT 6) est un boundstone algaire (destruction de tapis algaire). Les éléments brèchifiés ont été resédimentés dans une biomicrite (grainstone) à bioclastes de crinoïdes, lamellibranches et brachiopodes, et oolithes hétérométriques recristallisées en chamosite. Ce microfaciès est caractéristique des dépôts d'arrière-barrière, ou en l'occurrence, d'arrière-barre ou dune oolithique.
Le deuxième banc (SLT 7) est une biomicrite (packstone/grainstone) à biomicrosparite (grainstone) à bioclastes hétérométriques de crinoïdes dominants, de lamellibranches et de brachiopodes. Les éléments présents dans cette lame mince sont de deux types différents :
- les petits bioclastes de crinoïdes très remaniés ("purée de crinoïdes"), les grands bioclastes de lamellibranches et de brachiopodes, et les oolithes recristallisées en chamosite, forment tout le fond de la lame.
- les grands bioclastes de crinoïdes, ovalisés à arrondis, très oxydés, à contours nets, et les oolithes ferrugineuses, semblent d'origine allochtone, et apparaissent en sur-imposition sur les éléments du fond de la lame mince.

Le troisième banc (SLT 8) présente le même microfaciès que SLT 7, le matériel allochtone étant toutefois absent.

Le dernier banc (SLT 9) possède le microfaciès caractéristique du niveau 3, identique à celui décrit Loubressac-Lapoujade et sur les autres coupes.

Les dépôts de la base du membre sont contemporains de la mise en place d'un système de barres oolithiques dans la région de Loubressac et Castelnau, mais sont situés dans une position plus proximale (marin restreint).

Les apports allochtones sont nombreux dans le deuxième banc, et absents dans le troisième. Les courants marins semblent donc avoir diminué d'intensité.

Le microfaciès du dernier banc témoigne d'une augmentation très forte de l'énergie hydrodynamique, et peut-être d'une légère rétrogradation des dépôts du haut-fond oolithique.

Magnagues (Fig. 9, p. 44)

La lame mince du premier échantillon du Membre de Rieuval (MG 19a), taillée perpendiculairement à la stratification, possède deux microfaciès différents de part et d'autre d'un mince liseré ferrugineux. La base de la lame est une biomicrite (wackestone/packstone) gréseuse (15 % de quartz). Les bioclastes de crinoïdes, seuls présents, sont peu nombreux. Ce microfaciès présente de fortes ressemblances avec celui de la partie sommitale du Membre des Argilites grises à Alvignac (AL 40 et AL 43) sur le liseré ferrugineux, la biomicrite (packstone/grainstone) contient moins de quartz (2 % de la surface de la lame mince). Les bioclastes de crinoïdes, de lamellibranches (brisés) et de brachiopodes, sont beaucoup plus nombreux que dans la partie inférieure. Ce microfaciès à éléments granocroissants indique une énergie qui augmente de la base au sommet. Le liseré ferrugineux pourrait matérialiser le passage de niveau 2b au niveau 3.

Les microfaciès sus-jacents (MG 19 à MG 21') varient d'une biomicrite (packstone/grainstone) à une biomicrosparite ou biosparite (grainstone). Le cortège
bioclastique est le même pour tous les bancs. Les petits bioclastes sont essentiellement des morceaux de crinoïdes très remaniés, associés à des débris de lamellibranches et de brachiopodes. Les grands bioclastes de lamellibranches (Pinna) et de brachiopodes ont des cassures fraîches. Les débris d'algues et de serpules sont assez nombreux. Le taux de quartz (1 à 5 %) a chuté par rapport à MG 19a. Nous notons la présence épisodique d'inaclastes limités par des films algaires, et de galets mous.

Le dernier banc (MG 22) est à la base une biomicrite (packstone) à bioclastes hétérométriques de crinoïdes, de lamellibranches, de brachiopodes, de gastéropodes et d'algues. Le fouissage est intense. La partie supérieure est une biomicrite (grainstone) à plages de biomicrosparite (grainstone). Les deux échantillons de ce banc contiennent de rares fantômes d'oolithes (MG 22a) ou oolithes ferruginueuses (MG 22b). L'énergie, malgré la présence d'oolithes, a chuté de MG 21 à MG 22. Ces dépôts se sont effectués en domaine marin ouvert, plus ou moins profond, d'énergie assez forte. Celle-ci est relativement moins élevée que dans la région de Castelnau et Loubressac-Lapoujade. La présence des oolithes ferruginueuses dans le banc MG 22 nous indique que ces sédiments ont pu être déposés dans une position latérale, et/ou plus distale, par rapport au haut-fond oolithique de Castelnau.

Puy d'Issolud (Fig. 8, p. 42)

A partir de PI 49 et jusqu'à PI 51, le faciès est une biomicrite (packstone) très gréseuse (10 à 30 % de quartz) à bioclastes d'encrines et de lamellibranches très morcelés, et de brachiopodes. Les tiges de crinoides sont très nombreuses. Ce microfaciès est l'équivalent de celui de la partie sommitale du niveau 2b des coupes précédemment étudiées.

Le changement de faciès est très remarquable entre PI 51 et PI 52. Le quartz a pratiquement disparu dans cette oobiomicrite (packstone) à plages de oobiomicrosparite (grainstone). Les petits bioclastes d'encrines de lamellibranches et de brachiopodes sont très remaniés, tandis que les grands bioclastes de lamellibranches ou de brachiopodes (plus nombreux qu'au-dessous) ont des cassures fraîches. Les fantômes d'oolithes sont plus nombreux dans cette lame mince que les oolithes recristallisées en chamosite. On observe en outre une arrivée massive de grands nodosariidés de forme enroulée ou en voie de déroulement. Les traces de fouissage sont plus nombreuses. La présence d'oolithes dans ce microfaciès d'énergie hydrodynamique assez forte, nous indique un domaine de sédimentation ayant des caractéristiques voisines de celui du niveau 3, dans la région de Castelnau.

Le banc PI 53 est une biomicrite (packstone). Le cortège bioclastique, un peu plus remanié, est le même que celui du banc PI 52. Les oolithes et les fantômes d'oolithes ont disparu. Ce microfaciès, moins énergétique que le précédent, ressemble fortement à celui de l'échantillon MG 22b à Magnagues.
Turene et Saillac (Fig. 10, p. 46; Fig. 13, p. 53)

Le microfaciès de l'unique banc formant le Membre de Rieuza! pour ces deux coupes, est une biomicrite (packstone) gréseuse (5 % de quartz) à bioclastes de crinoïdes dominants, de lamellibranches et de brachiopodes. Ces dépôts ont été réalisés dans un milieu de sédimentation identique à celui des dépôts sommitaux du niveau 2b à Magnaugues et au Puy d'Issolud.

Alvignac (Fig. 11, p. 48)

Les microfaciès des échantillons du Membre de Rieuza! sont relativement constants de AL 44 à AL 51. Ce sont des biosparite (grainstone) ou des biomicrosparite (grainstone) à bioclastes arrondis de crinoïdes dominants, associés à quelques bioclastes hétérométriques de lamellibranches, brachiopodes et serpules. On observe la présence de fantômes d’oolithes en chamosite (AL 45 et 47), et d’extraclastes, de radioles d’échinides et de débris d’algues (AL 45).

Ce microfaciès de haute énergie semble avoir des caractéristiques assez proches de celles du niveau 3 à Loubressac-Lapoujade. Quelques différences sont tout de même à noter :
- la ferruginisation affecte les bioclastes à Loubressac-Lapoujade, tandis que c'est le ciment spatulique qui est oxydé à Alvignac;
- l’oxydation et la dolomitisation sont moins intenses à Alvignac qu’à Loubressac-Lapoujade;
- les oolithes ferrugineuses sont totalement absentes à Alvignac (seuls quelques fantômes d’oolithes en chamosite ont pu être observés);
- l’énergie hydrodynamique est relativement moins forte à Alvignac.

Nous situons ces dépôts de domaine marin ouvert, plus ou moins profond, de haute énergie, en position légèrement plus distale que les dépôts du niveau 3 dans les régions de Castelnau et de Loubressac-Lapoujade.

Conclusion

Excepté à Saint-Laurent-les-Tours, les microfaciès des bancs rapportés à la partie terminale du niveau 2b sont grossièrement identiques sur toutes les coupes étudiées (biomicrites -packstone- à bioclastes hétérométriques de crinoïdes dominants). L’évolution verticale des faciès du niveau 2b souligne une énergie croissante vers le haut jusqu’à la discontinuité I-C 1.

En ce qui concerne le niveau 3, l’analyse micropétrographique a permis de montrer une très forte analogie des microfaciès des affleurements ponctuels de Castelnau, de St Michel-Loubéjou et de Miers, avec ceux de la coupe de Loubressac-Lapoujade (oobiomicrosparite ou oobiomicrosparite-grainstone- très oxydée). A Puymule, La Rouquette, St Laurent-les-Tours, Magnaugues et le Puy d’Issolud, seule la partie terminale du Membre de Rieuza! présente un
faciès oolithique ferrugineux voisin de celui décrit sur la coupe de référence, mais de moindre énergie.

Ce microfaciès oolithique n’a pas été observé au Nord, à Turenne et Saillac, et au Sud à Alvignac.

C/ Conclusion

Evolution dans le temps :

Les variations temporelles des paléoenvironnements dans le Membre de Rieuzal, nous montrent, sur toutes les coupes (excepté celles de Turenne, Saillac et Alvignac), une évolution d’un domaine d’offshore supérieur à la base (sommet du niveau 2b), vers un domaine de shoreface inférieur au sommet (niveau 3), soumis épisodiquement à l’action des vagues de tempêtes. À Turenne, Saillac et Alvignac, seuls les dépôts d’offshore supérieur ont été observés. L’analyse des microfaciès indique une chute brute de l’énergie hydrodynamique dans le dernier échantillon du niveau 3 à Loubressac-Lapoujade, Castelnau, Magnagues et le Puy d’Issolud.

Variations dans l’espace :

Tout se passe comme si nous étions en présence de deux corps oobioclastiques de zone subtidale agitée, dont l’orientation est difficile à déterminer. Le premier se situerait au niveau des coupes de Loubressac-Lapoujade, Castelnau et St Michel-Loubéjou, le deuxième, plus au Sud, dans la région de Miers. Ces hauts-fonds oolithiques pourraient être des barres d’avant-côte ou des dunes géantes hydrauliques. Ces dépôts se seraient réalisés dans les deux cas sous une faible tranche d’eau (quelques mètres tout au plus).

La coupe de St Laurent-les-Tours, située à l’Ouest du premier haut-fond, indique un domaine marin restreint d’arrière-barre ou dune oolithique.

A Alvignac, au Sud de Miers, les dépôts sont considérés comme plus distaux, dans un domaine d’avant-barre.

A l’Est (Magnagues et le Puy d’Issolud) et au Nord-Est (Turenne et Saillac), nous nous situerions dans un domaine latéral, plus profond et moins agité.
III. 3. 1. 3 Le Membre de Lapoujade (Niveau 4)

A/ Données sédimentologiques

a/ Figures et structures sédimentaires

Castelnau
A la limite entre le Membre de Rieuval et le Membre de Lapoujade, apparaît un banc calcaire à surfaces onduleuses dont l'épaisseur varie de 13 à 22 cm. Il montre un dispositif en on-lap caractéristique, de l'Est vers l'Ouest.

Turenne (Fig. 10, p. 46)
La partie supérieure du niveau 4 (TU 35 à TU 41) est formée d'une alternance marnes-calcaires gréseux. Les bancs de calcaires gréseux sont stratodécroissants et présentent des laminations fines et parallèles, planes ou obliques alternées.

Nous les considérons comme des dépôts réalisés dans un environnement proche de celui du niveau 2a de Loubressac-Lapoujade, c'est à dire dans un domaine d'offshore supérieur médian à distal.

b/ Micropétrographie

Magnagues (Fig. 9, p. 44)
Le niveau induré (MG 23) est une biomicrite ferrugineuse (wackestone) à matrice argileuse contenant 5 % de quartz. Les bioclastes de crinoïdes et de nodosariidés sont rares. Le microfaciès est un peu plus bioclastique que celui du banc PJ 38, à Loubressac-Lapoujade, mais le domaine de dépôt est le même.

Castelnau
CAS 9 et CAS 10 sont des biomicrites (wackestone) oxydées à rares bioclastes de crinoïdes très émoussés. Ce faciès est le même que celui décrit à Loubressac-Lapoujade (PJ 38).

Saillac (Fig. 13, p. 53)
SA 2 présente le même microfaciès que MG 23, PJ 38 et CAS 9 et 10. C'est une biomicrite (wackestone) ferrugineuse à rares gros bioclastes de pentacrines.

Turenne (Fig. 10, p. 46)
Ces bancs centimétriques gréseux de la partie supérieure de cette unité lithostratigraphique (TU 35, 37, 39 et 41) sont des grès très fins. Les quartz silteux homométriques de taille inférieure au 1/100e de mm représentent plus de 50 % de la surface de la lame mince. Les laminations obliques alternées sont visibles à l'échelle de la lame mince (TU 41).
Conclusion

Les bancs plus indurés du Membre de Lapoujade ont des caractéristiques très voisines de ceux de Loubressac-Lapoujade, Magnauges et Castelnau. Le faciès est beaucoup plus gréseux à Turenne, en raison d'un contexte plus littoral.

B/ Données micropaléontologiques (matériel dégagé)

ai Ostracodes

Le Membre de Lapoujade est caractérisé par une diversité spécifique constante, 3 espèces par échantillon, et par un nombre d'individus variable mais assez élevé, de 18 à plus de 500. Les genres Ogmoconcha, Ogmocouchella et Pseudohealdia sont présents dans la presque totalité des gisements. Les différentes espèces vivent en compétition dans des conditions difficiles, et anihilent l'implantation de nouvelles espèces. Le milieu est très calmes, le rapport carapaces/valves isolées étant de 87 % en moyenne. Les ressources trophiques sont abondantes : les échantillons ont livré de véritables thanatocoenoses en place (adultes mâles et femelles, et différents stades juvéniles d'espèces appartenant aux genres Ogmoconcha et Pseudohealdia).

Au sommet du niveau 4, les paramètres du milieu deviennent létaux pour les ostracofaunes, pour toutes les coupes, excepté à Magnauges. Le contenu micropaléontologique de l'échantillon MG I (4 espèces), nous indique en effet des conditions infralittorales plus profondes et agitées (10 % de carapaces) que celles des prélèvements sous-jacents de ce niveau.

b/ Foraminifères

L'étude des foraminifères benthiques n'apporte pas de renseignements complémentaires sur les paléoenvironnements du niveau 4.
III. 3. 2 La Formation de la Barre à Pecten (niveau 5, 6 et 7)

A/ Données sédimentologiques

a/ Figures et structures sédimentaires

Magnagues, Turenne et Saillac (Fig. 9, 10 et 13)
La Formation de la Barre à Pecten possèdent, dans ces trois coupes, des caractéristiques sédimentologiques très voisines de celles décrites à Loubressac-Lapoujade que ce soit pour le niveau 5, le niveau 6 ou le niveau 7.

Les dépôts sont tous attribués au domaine d'offshore supérieur :
- médian à distal, pour le niveau 5;
- proximal, pour le niveau 6;
- distal, pour le niveau 7.

Alvignac (Fig. 11, p. 48)
- Niveau 5

Il est caractérisé par des bancs marneux beaucoup plus épais que ceux de toutes les autres coupes. De AL 54 à AL 63, les bancs de calcaires et de calcaires argileux présentent une stratification horizontale et parallèle et des surfaces beaucoup moins irrégulières qu'à Loubressac-Lapoujade. Nous considérons que ces bancs se sont déposés dans un domaine d'offshore supérieur plus distal que celui du niveau 5 à Loubressac-Lapoujade.

De AL 64 à AL 68, on observe le développement d'un ensemble calcaire comprenant :
- à la base, un niveau nodulaire, AL 64;
- au-dessus, un banc centimétrique à surfaces inférieure et supérieure ondulante, AL 65;
- enfin, un groupe de trois bancs dont l'épaisseur varie au gré de l'ondulation des surfaces de dépôt.

Au sommet, de AL 69 à AL 70, les structures sédimentaires sont les mêmes que celles observées à la base du niveau 5.

- Niveau 6 et Niveau 7

Pour ces deux niveaux, les caractéristiques sédimentologiques sont identiques à celles décrites sur les coupes précédemment étudiées. Les interprétations en termes de paléoclimat ont également les mêmes.
Saint-Laurent-les-Tours (Fig. 12, p. 50)

- Niveau 5

La base de la Formation de la Barre à Pecten, située entre les marnes du Membre de Lapoujadet et la lacune d'observation, montre des structures sédimentaires proches de celles des autres niveaux 5. L'ondulation des surfaces inférieures et supérieures des bancs semblent toutefois beaucoup plus marquée. Nous en concluons que cet ensemble s'est déposés dans un contexte paléoenvironnemental d'offshore supérieur plus proximal que celui de Loubressac-Lapoujade.

- Niveau 6

Après la lacune d'observation, les bancs de calcaires sont plus épais qu'au-dessous et les interbancs marneux plus minces. L'ondulation des bancs est de plus en plus marquée de SLT 30 à SLT 39. La surface supérieure du banc SLT 39 montre des figures de rides à crêtes droites d'orientation N 140°-N 160°.

- Niveau 7

Le dispositif sédimentologique est le même que celui du niveau sous-jacent. A la base, de SLT 40 à SLT 43, les interbancs marneux sont moyennement épais (5 à 20 cm), puis deviennent beaucoup plus minces de SLT 43 jusqu'au sommet de la coupe.

Grèzes (Fig. 15, p. 64)

- Niveau 5

Le faciès très grossier et détritique, les poches d'accumulation (GRZ 10) de terrigènes grossiers, les structures chenalises en auge (GRZ 11 à 13) nous indiquent le domaine de sédimentation le plus proximal de notre région d'étude : shoreface supérieur à foreshore.

Au-dessus, de GRZ 14 à GRZ 31, les bancs calcaires, d'épaisseur plus importantes qu'au-dessous, sont stratifiés plus parallèlement et possèdent des surfaces plus régulières, les interbancs marneux sont plus épais.

b/Micropétrographie

Magnagues (Fig. 9, p. 44)

- Niveau 5

Le redoublement de la série de part et d'autre de la faille (MG 25 à 33 et MG 40 à 45) est confirmé par l'étude micropétrographique. Les microfaciés sont les mêmes et leur évolution identique. L'organisation en quatre séquences d'énergie croissante, décrites à Loubressac-Lapoujade, apparaît aussi à Magnagues. La première de ces séquences, de MG 25 à MG 32
(ou MG 40 à MG 45) débute par un biomicrite (wackestone) gréseuse (20 % de quartz) à bioclastes de crinoïdes dominants. C'est un microfaciès identique à celui du banc PJ 47. Au-dessus, le microfaciès est une biomicrosparite (grainstone) de MG 26 à MG 30, puis une biomicrosparite (grainstone) à rares oolithes cristallisées en chamosite de MG 31 à 32. De MG 26 à 32, les bioclastes sont représentés par des bioclastes hétérométriques de crinoïdes, de lamellibranches, de brachiopodes et de serpules. Plus on monte dans cette séquence, plus le nombre de grands bioclastes à cassure fraîche augmente. La quantité de quartz silexieux représente en moyenne 1 à 2 % de la surface de la lame mince. Le développement de faciès de plus en plus spärtiliques, la nature des bioclastes et la présence de quelques oolithes à la partie supérieure de cette séquence indique une énergie croissante et des dépôts de plus en plus proximaux de la base au sommet.

Les trois séquences sus-jacentes montrent exactement la même évolution. Les microfaciès de base de séquence MG 25, 46, 49 et 54 sont tous des biomicrites [wackestone (MG 25), ou packstone] gréseuse. Le taux de quartz diminue et le nombre de bioclastes augmente de MG 25 à MG 54.

Les microfaciès intermédiaires et sommitaux sont les mêmes pour chaque séquence que ceux décrits pour la première. Par contre, les oolithes présentes à la fin de la première séquence disparaissent au niveau des trois autres.

Ces sédiments se sont déposés dans un domaine marin ouvert peu profond de forte énergie. Il semble que les séquences décrites évoluent en comblement. Chacune d'entre elles montre une énergie croissante et un domaine sédimentaire de plus en plus proximal.

- Niveau 6

Une rupture micropétrographique est, comme à Loubressac-Lapoujade, difficile à mettre en évidence. La base de la barre de calcaire (MG 57-61) présente un microfaciès dolomitisé et très oxydé. Les bioclastes de cette biomicrite (packstone/grainstone) sont très hétérométriques. Les grands bioclastes de lamellibranches sont centimétriques et nombreux. Les petits bioclastes de crinoïdes, de brachiopodes et de serpules sont très remaniés. Les crinoïdes sont beaucoup moins nombreux que dans le niveau 5.

Au-dessus, le banc MG 58 est une biomicrosparite à bioclastes hétérométriques, hétéromorphes, morcelés et remaniés de crinoïdes, lamellibranches, brachiopodes et rares gastéropodes. Au-dessus de ce banc, les microfaciès sont très proches. La seule variation résidant dans la prédominance, soit des bioclastes de crinoïdes, soit des bioclastes de lamellibranches. La taille des bioclastes et l'énergie diminuent du bas vers le haut de cet ensemble calcaire.

On observe les mêmes faciès et la même évolution de la taille des bioclastes et de l'énergie pour les bancs MG 62-63 et MG 64-66.
Le milieu de sédimentation est très voisin de celui du niveau 5. L'évolution de l'énergie hydrodynamique semble s'être inversée : elle était croissante dans le niveau 5 et devient décroissante de la base au sommet du niveau 6.

- **Niveau 7**

Le premier banc de ce niveau (MG 67) est une bimicrite (packstone) à petits bioclastes de crinoïdes remaniés et rares grands bioclastes de lamellibranches. Contrairement à ce que nous avons observé à Loubressac-Lapoujade, le microfaciès est assez différent du microfaciès terminal du niveau 6 (bimicrite (grainstone) à bioclastes très remaniés de crinoïdes).

Le taux de quartz augmente brutalement et passe de 1 à 2 % (niveau 6) à 10 % pour la base du niveau 7.

Au-dessus, de MG 68 à MG 70, le microfaciès varie d'une bimicrite (packstone) à une biomicrosparite (grainstone). Le cortège bioclastique est assez diversifié (crinoïdes, lamellibranches, brachiopodes et bryozoaires). Les bioclastes sont dans l'ensemble plus petits qu'à la base et que dans le niveau 6. Les *Verneuilinoides mauritii* apparaissent dans le banc MG 68, et sont associés aux *Glomospira* dans le banc MG 70.

A partir de MG 71, le taux de quartz augmente brutalement au sein d'une bimicrite (packstone à grainstone) et représente 20 à 30 % de la surface de la lame mince. Le nombre et la taille des bioclastes diminuent. Le banc MG 73 est un faciès à *Glomospira* (41 individus dénombrés). La partie sommitale du niveau 7 à Magnagues peut se corréler banc par banc avec celle du même niveau à Loubressac-Lapoujade.

La dolomitisation intense qui masque les microfaciès à Loubressac-Lapoujade ne nous permet pas d'établir des comparaisons sûres avec ceux de Magnagues pour les niveaux 6 et 7.

Les microfaciès et leur évolution sont très voisins pour l'ensemble de la barre à *Pecten*. Les corrélations sont aisées à mettre en évidence pour l'unité 5 (4 séquences d'énergie croissante évoluant en en comblement) et l'unité 7 (décharge de quartz, présence de couples de foraminifères *Verneuilinoides mauritii* - *Glomospira*).

Les contextes paléoenvironnementaux proches de ceux décrits à Loubressac-Lapoujade ont une même évolution :

- **niveau 5**, domaine marin ouvert, peu profond, de forte énergie (croissante du bas vers le haut);
- **niveau 6**, domaine marin ouvert, peu profond, de forte énergie (décroissante du bas vers le haut);
- niveau 7, domaine marin ouvert, plus profond, d'énergie plus faible, que les deux niveaux précédents.

Alvignac (Fig. 11, p. 48)

- Niveau 5

Les quatre séquences d'hydrodynamisme croissant dégagées de l'étude micropétrographique à Loubressac-Lapoujade et Magnagues sont aussi présentes à Alvignac. Elles correspondent à quatre séquences stratocroissantes évoluant de dépôts marneux à la base vers des bancs calcaires de plus en plus épais au sommet : AL 55 à 58, AL 59 à 63, AL 64 à 68 et AL 69 à 70.

Le microfaciès de la base des séquences est une biomicrite (packstone) gréseuse à bioclastes de crinoïdes dominants, de lamellibranches, de brachiopodes et de serpules. Le taux de quartz diminue de AL 55 à AL 69 (AL 55 : 10 % de quartz ; AL 59 : 2 % ; AL 64 : 5 % et AL 69 : 3 %).

Le microfaciès passe progressivement pour chaque séquence de cette biomicrite (packstone) gréseuse basale à :
- une biomicrite (packstone/grainstone), pour la séquence 1;
- une biomicrite (grainstone) à plage de biomicroparite (grainstone), pour la séquence 2;
- une biomicrite (grainstone) pour la séquence 3;
- une biomicrite (packstone) faiblement gréseuse (5 % de quartz), pour la séquence 4.

Les bioclastes, grands ou petits, sont d'une même origine biologique qu'à la base mais beaucoup plus nombreux. Les petits bioclastes sont remaniés alors que les grands ont des cassures fraîches.

- Niveau 6

L'extrême base du banc AL 71-73 possède un microfaciès très voisin de celui des échantillons du niveau 5. Par contre, le prélèvement AL 72 est une biomicroparite (grainstone) à grands bioclastes de lamellibranches, brachiopodes, serpules et crinoïdes. Ce microfaciès nous indique une très forte élévation de l'énergie hydrodynamique. Au-dessus, jusqu'à AL 75, le microfaciès est une biopelmicrite (grainstone) gréseuse (10 % de quartz), puis une biopelmicrite (packstone/grainstone) faiblement gréseuse.

Les bioclastes de crinoïdes sont moins nombreux de la base au sommet. Les gros bioclastes de serpules et de lamellibranches sont brisés. La taille des bioclastes diminue en général de AL 73 à AL 75. L'énergie est donc décroissante du bas vers le haut dans le niveau 6.
- Niveau 7

Le passage du niveau 6 au niveau 7 n'est pas mis en évidence par un changement de microfaciès. Les caractéristiques micropétrographiques de ces deux niveaux sont très voisines. Nous pouvons toutefois signaler pour ces biomicrite (packstone) :

- un taux de quartz supérieur à celui des échantillons du niveau 6 (2 à 10 %, suivant les bancs);
- un nombre moins important de gros bioclastes;
- une quantité beaucoup plus grande de microbioclastes.

Les microfaciès de la Formation de la Barre à Pecten, à Alvignac sont relativement semblables de la base au sommet. Les quatre séquences du niveau 5 sont beaucoup plus marneuses et d'énergie moins forte que celles décrites à Loubressac-Lapoujade ou Magnaguès. La limite entre les niveaux 5 et 6 se signale par la brutale augmentation de l'énergie entre les bancs AL 71 et AL 72. Les microfaciès de l'unité 6 et 7 ont des caractéristiques très voisines mais la taille de plus en plus réduite des bioclastes de AL 76 à AL 80 nous indique sans doute une baisse de l'énergie hydrodynamique et/ou une accentuation de la profondeur des dépôts.

Les microfaciès sont beaucoup plus homogènes que sur les autres coupes quel que soit le niveau considéré. Cette relative uniformité des dépôts nous indique un domaine de sédimentation, marin ouvert, plus profond, et d'énergie moins forte, que celui de Loubressac-Lapoujade ou de Magnaguès.

Turenne et Saillac (Fig. 10 et 13)

- Niveau 5

Le découpage en quatre séquences d'énergie croissante peut toujours être effectué, malgré une homogénéité des microfacies de plus en plus grande de la région de Loubressac-Lapoujade à Saillac. L'évolution des microfaciès, pour chacune de ces séquences -SA 3 à 6, SA 7 à 9, SA 10 à 14 et SA 15 à 18-, est la même que celle décrite pour les autres coupes :

- à la base, une biomicrite (packstone) à bioclastes de crinoïdes (essentiellement), très émoussés. La quantité de quartz, dans le premier prélèvement des séquences, est toujours plus grand que celui des échantillons sus-jacents. Il varie de 5 % pour SA 3 et SA 7, puis 10 % pour SA 10 et enfin 15 % pour SA 15. Les microfaciès de base de séquences sont très aisément corrélable de Loubressac-Lapoujade à Magnaguès et Saillac;

- au-dessus, les microfaciès sont des biomicrite (packstone/grainstone) à plages de biomicroparite (grainstone), puis des biomicroparite (grainstone). Les petits bioclastes de crinoïdes remaniés sont maintenant associés à de grands bioclastes de lamellibranches, de brachiopodes, de serpules et de spicules d'éponges, de plus en plus nombreux du bas vers le
haut de chaque séquence. Le banc SA 18, dernier prélèvements du niveau 5 est une biomicrosparte (grainstone) à rares oolithes dont les nucléi sont micritiques.

La première de ces quatre séquences présente des microfaciès dolomitisés.

- **Niveau 6**

Il n'existe pas de différences significative des microfaciès entre le niveau 5 et le niveau 6. La dolomitisation assez intense observé en SA 20 est la seule indication qui pourrait nous permettre d'établir une corrélation avec la base du niveau 6 à Loubressac-Lapoujade. De SA 19 à SA 32, les microfaciès évoluent de la même façon que dans le niveau 5 sous-jacent. Les bancs SA 19 et SA 26 sont des biomicrites (packstone) gréseuse (20 % de quartz) et représentent les bases de deux nouvelles séquences d'énergie croissante, SA 19 à 25 et SA 26 à 32.

Deux hypothèses de découpage peuvent être avancées pour la partie inférieure et moyenne de la Formation de la Barre à Pecten, à Saillac et Turenne :

1) la dolomitisation qui affecte le banc SA 20 (beaucoup moins prononcée que celle des échantillons PJ 85-86), est corrélée avec celle de la base du niveau 6 à Loubressac-Lapoujade. Elle indiquerait de la même manière des conditions proches de l'émerison. Dans ce cas, il nous semble difficile d'expliquer que ce phénomène se marque de façon moins intense à Saillac qu'à Loubressac-Lapoujade, alors que selon notre interprétation, les domaines de dépôts sont plus proximaux en allant de Loubressac-Lapoujade à Saillac;

2) le niveau 6 n'existerait pas. Le niveau 5 serait donc plus épais dans la région de Saillac que dans celle de Loubressac-Lapoujade, et dans cette hypothèse, contiendrait deux séquences supplémentaires, identiques à celles des dépôts sous-jacents. La dolomitisation pourrait marquer des conditions de plus en plus proximales pour la base des séquences sommitales du niveau 5.

Contrairement aux observations faites sur les autres coupes, les bancs de base de séquences contiennent de plus en plus de quartz (SA 3, 5%; SA 26, 20%).

Les formes enroulées et en voie de déroulement de nodosariidés sont sensiblement plus nombreuses que les formes droites. Cette tendance augmente de la base vers le sommet. Le couple *Verneuilinoides mauriti-Glomospira* apparaît dès le banc SA 30.

- **Niveau 7**

Une rupture nette est impossible à mettre en évidence au passage du niveau 6 au niveau 7. Par contre, nous retrouvons dans les microfaciès des bancs sus-jacents des éléments de corrélations, caractéristiques de la fin de la Barre à Pecten.

Le taux de quartz est assez constant de SA 33 à SA 44, et représente de 7 à 15 % de la surface de la lame mince.
Les bioclastes de ces biomicrite (packstone) à biomicroparite (grainstone) sont beaucoup plus petits et bien triés qu'au-dessous. Les crinoïdes sont plus nombreux.

Le couple Verneuilinoides mauritii - Glomospira est présent en grand nombre dans le banc SA 44.

Il est possible de corrêler banc par banc les parties terminales de la Formation de la Barre à Pecten de Magnagues et Saillac :
- le microfaciès de SA 43 est identique à celui de MG 70;
- ----------------- SA 44 ------------------------- MG 72;
- ----------------- SA 45 ------------------------- MG 74.

On note l'apparition, dès le banc SA 36, de spicules d'éponges (différents de ceux du niveau 5) qui seront présents jusqu'à la fin de ce niveau 7.

Les milieux de dépôts de la Formation de la Barre à Pecten à Saillac et Turenne sont approximativement les mêmes que ceux des autres sites étudiés pour les niveaux 5 et 7. La différence essentielle réside dans l'absence éventuelle du niveau 6.

Grèzes (Fig. 15, p. 64)

Comme nous l'avons relevé dans l'étude lithologique, la Formation de la Barre à Pecten à Grèzes présente des caractéristiques micropétrographiques très différentes de celles des autres coupes.

Le premier banc GRZ 1 est une biomicrite (packstone) gréseuse à petits bioclastes de crinoïdes et très rares bioclastes de lamellibranches et brachiopodes. Les grains de quartz hétérométriques, arrondis, sub-anguleux ou anguleux représentent de 50 à 60 % de la surface de la lame mince. Leur plus grande longueur n'excède pas le millimètre. Ils sont dans l'ensemble assez bien triés. Les gros grains sont plutôt arrondis, alors que les petits sont plus anguleux.

Après un intervalle marneux, le microfaciès de GRZ 5 est une biomicrite (packstone/grainstone) dolomitisée, à bioclastes (petits et grands) de crinoïdes, de lamellibranches et de brachiopodes. Le taux de quartz est de 15 %. Nous observons ensuite une arrivée d'éléments détritiques de plus en plus marquée, de GRZ 6 à GRZ 10. Plus on monte dans la série plus les grains sont gros et mal triés. A partir de GRZ 6 leur taille est supérieure au millimètre. Les gros grains de quartz peuvent être monocristallins ou polycristallins (origine métamorphique). La décharge détritique atteint son maximum d'intensité au niveau des prélèvements GRZ 10a, b et c. GRZ 10b révèle la présence de feldspaths (perthite, microcline). Les éléments de plus de 3 mm de longueur sont fréquents et plus ils sont gros plus ils sont arrondis. De GRZ 6 à 10, les grands bioclastes de crinoïdes,
de lamellibranches et de brachiopodes deviennent moins nombreux. Les petits bioclastes sont de plus en plus remaniés et brisés.

Le banc GRZ 11 possède un microfaciès très voisin de celui de GRZ 9 et nous signale un retour des apports marins, par la présence de grands bioclastes de lamellibranches et de brachiopodes. Le banc GRZ 12 est un grès très poreux, à bioclastes de crinoïdes remaniés. Les grains de quartz représentent de 60 à 70 % de la surface de la lame mince. Ils sont associés à de rares clastes felspathiques (microcline).

De GRZ 1 à GRZ 12, les apports continentaux (quartz et autres minéraux) sont de plus en plus marqué.Trois séquences de comblement peuvent être individualisées :
- la première, hypothétique, se terminerait par le banc très gréseux, GRZ 1;
- la deuxième, de GRZ 2 à GRZ 10, présente à la base des marnes indurées, puis des biomicrites (packstone/grainstone) gréseuses à petits et grands bioclastes. La taille des grains détritiques (en moyenne 15 % de la surface de la lame mince) augmente régulièrement jusqu'à GRZ 10, tandis que le nombre et la taille des bioclastes diminuent;
- la troisième, très réduite en épaisseur, est composée des bancs GRZ 11 et 12. Elle débute par un banc contenant 15 % de quartz où l'influence marine se fait sentir par la présence de grands bioclastes d'origines biologiques diverses. Le sommet est un grès bioclastique. Contrairement à la séquence précédente, c'est par le nombre d'éléments détritiques et non par leur taille, que se marque une influence continentale grandissante.

De GRZ 13 à GRZ 17, La polarité d'évolution des microfaciès est inverse. Les apports continentaux sont toujours abondants (GRZ 15 contient un fragment de roche, arrondi et emoussé, formé de quartz feldspath et grenat), mais leur quantité et la grosseur des grains diminuent.

Le caractère de plus en plus marin des microfaciès à partir de GRZ 13 est marqué de la façon la plus nette au passage de GRZ 17 à GRZ 18. Le taux de quartz passe de 10 à 5 %; Les gros grains détritiques de taille millimétrique, rares dans la lame mince GRZ 17, sont absents au-dessus. GRZ 18 est une biomicrite (packstone) à bioclastes de crinoïdes dominants, spicules d'éponge (équivalents de ceux du niveau 5 à Turene et Saillac), pellets et fantômes d'oolithes. Le couple Verneullinoides mauritii - Glomospira, caractéristique du niveau 7, est présent, mais dans de moindre proportion par rapport aux autres coupes.

A partir de GRZ 20, deux échantillons ont été prélevés, un dans la partie inférieure du banc, l'autre en partie supérieure. Ces deux échantillons présentent des caractéristiques micropétrographiques différentes, pour tous les bancs :
- la base est une biomicrite (packstone) gréseuse (en moyenne 20 % de quartz de taille inframillimétrique) à bioclastes de crinoïdes remaniés. Les éléments détritiques sont bien triés. La dolomitisation est assez intense;
- le sommet est une biopelmicrosparite (grainstone) à bioclastes de crinoïdes, de lamellibranches, de serpules et de spicules d'éponge (GRZ 25, 26 et 27). Les quartz
occupent 10 % de la surface de la lame mince. Les foraminifères sont essentiellement représentés par le couple *Verneuilinoides mauritii* - *Glomospira* sp.. Ce microfaciès est très voisin de celui observé en fin de Barre à Pecten à Magnagues et Saillac. Les spicules d'éponges présents à partir du banc SA 36, sont du même type que ceux des bancs GRZ 25, 26 et 27. La diminution de la taille des grains de quartz est évidente à partir de GRZ 25. Ils sont de taille inférieure ou égale au 1/10 de millimètre après GRZ 27. Au-dessus la dolomitisation intense des microfaciès masque l'observation des lames minces.

De GRZ 20 à GRZ 31, les apports continentaux sont moins nombreux de la base vers le sommet de chaque strate. Cette évolution est de plus en plus prononcée du bas vers le haut de cette série.

La partie inférieure de la Formation de la Barre à Pecten à Grèzes possède des caractéristiques, à la fois lithologiques et micropétrographiques, très différentes de celles décrites sur les autres coupes. La proximité des côtes et d'apports continentaux ne fait aucun doute. Seule l'existence de séquences montrant des dépôts de plus en plus proximaux, nous permet d'établir, à la base, une corrélation hypothétique avec le niveau 5 des autres coupes. Comme à Saillac, aucune observation micropétrographique ne nous confirme la présence du niveau 6. Par contre la partie supérieure de cette formation peut être sûrement corrélée avec les niveaux 7 des autres sites étudiés. Une incertitude réside toutefois dans l'emplacement de la limite entre les niveaux 5 et 7. Deux hypothèses sont à notre disposition pour la positionner :
- soit au niveau de l'inversion de tendance mise en évidence entre GRZ 12 et GRZ 13, c'est-à-dire à la limite entre un ensemble de bancs montrant des faciès de plus en plus proximaux et un autre ensemble indiquant une évolution paléogéographique inverse;
- soit à l'endroit où la rupture entre ces deux domaines est la mieux marquée, entre GRZ 17 et GRZ 18.

III. 4. SYNTHESE (Fig. 30, p. 146)

III. 4. 1. Paléogéographie

Les analyses sédimentologiques et micropétrographiques nous indiquent un approfondissement du bassin :
- du NW vers le SE, de Grèzes à Loubressac-Lapoujade;
- de l'Est vers l'Ouest, de Saint-Laurent-les-Tours à Loubressac-Lapoujade;
- du Nord vers le Sud, de Loubressac-Lapoujade à Alvignac.
Figure 30 :
Schéma de corrélation des niveaux lithologiques,
des séquences micropétrographiques
et des discontinuités sédimentaires.
Le caractère le plus litoral des microfaciès a été observé à Grèzes (crachée détritique de minéraux pouvant provenir des formations hercyniennes, métamorphiques et plutoniques, du Massif central situées plus au Nord).

Le développement de l'épaisseur des bancs marneux, et les figures sédimentaires étudiées à Alvignac, nous indiquent les environnements les plus marins dans cette région.

Les dépôts marneux du Membre des Argilites grises sont pratiquement identiques à Loubressac-Lapoujade, à Gintrac et au Puy d'Issolud.

Le Membre de Rieuval, dans les régions de Loubressac-Lapoujade, de Castelnau et de Miers, nous montre l'installation de haut-fonds oobioélastiques contemporains de grande amplitude. Latéralement, l'équivalent lithologique de ces corps tidaux s'amincit fortement vers le NW, de Magnagues à Turenne, vers l'Est à Saint-Laurent-les-Tours, et vers le Sud à Alvignac.

Les marnes du Membre de Lapoujade, présentes au sein de toutes les coupes, et de puissance voisine, de Turenne à Alvignac, semblent uniformiser les dépôts de plate-forme.

Ceci reste vrai ensuite pour la Formation de la Barre à Pecten. De Turenne à Alvignac, les corrélations niveaux par niveaux sont très faciles à réaliser. Seules les coupes de Saint-Laurent-les-Tours et de Grèzes, situées très certainement en position plus litorale montrent des caractéristiques différentes.

III. 4. 2. Interprétation préliminaire en termes de stratigraphie séquentielle

A partir de la géométrie des dépôts (variations d'épaisseur et lacunes éventuelles), des caractéristiques des discontinuités et des variations de l'espace disponible nous pouvons proposer une première interprétation en termes de stratigraphie séquentielle.

Formation de Valeyres

- **Membre des Argilites grises**
 - **Niveau 1** : intervalle transgressif marneux de la séquence PL 4 (désigné par le sigle TST 4). La croute ferrugineuse (discontinuité I-M 1), située au sommet de ce niveau, est interprétée comme une surface d'inondation maximale (MFS 4).
 - **Niveau 2** : prisme de haut niveau marin de la séquence PL 4 (HST 4).

- **Membre de Rieuval**
 - **Niveau 2b** : la partie sommitale de ce niveau correspond à la fin du prisme de haut niveau marin, HST 4. La discontinuité de baisse des eaux, I-C 1, située à la limite entre les niveaux 2b et 3, est interprétée comme la limite de séquence de dépôt de la séquence PL 5 (SB 5).
Niveau 3 : prisme de bas niveau de la séquence PL 5 (LST 5). La discontinuité de montée des eaux et d'approfondissement des dépôts, C-M, est considérée comme une première surface d'inondation (TS 5).

-Membre de Lapoujade

Niveau 4a : les dépôts marneux sous-jacents à la discontinuité 1-M 2, représentent l'intervalle transgressif de la séquence PL 5 (TST 5). La discontinuité 1-M 2 est interprétée comme une surface d'inondation maximale (MFS 5).

Niveau 4b : les marnes sus-jacentes à la croute ferrugineuse (I-M 2), représentent le début du prisme de haut niveau marin de la séquence PL 5 (HST 5).

Formation de la Barre à Pecten

Niveau 5 : fin du prisme de haut niveau marin (HST 5). La discontinuité de baisse des eaux, I-C 2, située à la limite entre les niveaux 5 et 6, signale la limite de séquence de dépôt de la séquence PL 6 (SB 6).

Niveau 7 : intervalle transgressif de la séquence PL 6 (TST 6).

III. 4. 3. Limites et problèmes

Grâce à l'analyse des microfaciès dans les séries à dominante calcaire, la reconnaissance des discontinuités sédimentaires et leur interprétation, et l'étude des paléoenvironnements, nous avons pu proposer à titre d'hypothèse un premier découpage en termes de stratigraphie séquentielle. Malheureusement quelques problèmes subsistent dans l'identification des cortèges sédimentaires, en particulier pour le Membre des Argilites grises à Turenne, et surtout dans les séries marnesuses homogènes de Loubressac-Lapoujade, de Gintrac et du Puy d'Issolud, au sein desquelles les renseignements sédimentologiques sont très rares. Dans ces environnements marneux, seule une analyse micropaléontologique fine des associations de foraminifères benthiques et d'ostracodes (étude quantitative et qualitative) peut nous permettre de lever les dernières indécisions (Membre des Argilites grises à Turenne), d'identifier les cortèges sédimentaires (Membre des Argilites grises à Loubressac-Lapoujade, à Gintrac et au Puy d'Issolud), et de préciser l'emplacement des surfaces d'inondation maximale dans les Membres des Argilites grises et de Lapoujade.
CHAPITRE IV

MICROPALÉONTOLOGIE
CHAPITRE IV : MICROPALAÉONTOLOGIE

IV. 1. OBJECTIFS ET MÉTHODES
 IV. 1. 1. Objectifs
 IV. 1. 2. Méthodes

IV. 2. MICROPALAÉONTOLOGIE ET STRATIGRAPHIE SÉQUENTIELLE
 IV. 2. 1. Distribution des peuplements
 IV. 2. 1. 1. Loubressac-Lapoujade
 IV. 2. 1. 2. Magnagues
 IV. 2. 1. 3. Puy d'Issolud
 IV. 2. 1. 4. Gintrac
 IV. 2. 1. 5. Turenne
 IV. 2. 1. 6. Saint-Michel-de-Bannières
 IV. 2. 1. 7. Conclusion

 IV. 2. 2. Analyses statistiques
 IV. 2. 2. 1. Taux de renouvellement et nombre de taxons
 IV. 2. 2. 2. Analyse des Correspondances Multiples (A.C.M.)
 Classification Hiérarchique
 IV. 2. 2. 3. Analyses Factorielles Discriminantes (A.F.D.)

 IV. 2. 3. Contenu micropalaéontologique des cortèges sédimentaires
CHAPITRE IV : MICROPALÉONTOLOGIE

IV 1. OBJECTIFS ET MÉTHODES

IV 1.1 Objectifs

Nous nous sommes assignés deux objectifs principaux pour cette étude micropaléontologique, fondée sur l’examen des populations des foraminifères benthiques et d’ostracodes :

- la confrontation des données avec la première interprétation de la série domérienne en termes de stratigraphie séquentielle (Cf. chapitre précédent), et son affinement en recherchant les données micropaléontologiques permettant de caractériser les différents cortèges sédimentaires ;

- l’établissement d’une biostratigraphie micropaléontologique, comparée avec celle réalisée dans le Quercy méridional (Cubaynes, 1986 ; Brunel, 1992), afin d’en proposer une synthèse applicable à l’ensemble du Quercy.

IV 1.2. Méthodes

Les données essentielles de cette étude nous ont été fournies par les formes dégagées des lavages de sédiments marneux ou argileux, provenant donc essentiellement du Membre des Argilites grises et du Membre de Lapoujade.

Une centaine de prélèvements marneux a été réalisée au niveau des coupes de Loubressac-Lapoujade (27 échantillons), de Gintrac (26 échantillons), de Magnaguès (14 échantillons), du Puy d’Issolud (15 échantillons), de Saint-Michel-de-Bannières (6 échantillons), et de Turenne (16 échantillons) (Fig. 31, p.152).

La méthode utilisée pour le lavage a été exposée par Ruget et al., 1989. Pour chaque prélèvement, 1 kg de marnes a été pesé, puis mis à sécher dans une bassine, le reste étant conservé au laboratoire (étude géochimique, minéralogique et palynologique...). Ensuite, les marnes ont été immergées dans de l’eau chaude additionnée d’un verre d’amine OA et d’un demi-verre de peroxyde d’oxygène à 120 volumes. Après deux jours de trempage, le sédiment est lavé sur une colonne de quatre tamis (1.4, 0.630, 0.250 et 0.100 mm), jusqu’à obtenir un résidu séché à l’étuve. Pour éviter toute contamination, les tamis ont été passés au moins 1/4 d’heure dans le bleu de méthylène après chaque utilisation.

Les refus des tamis de 1.4 mm, 630 mm et 250 mm sont entièrement triés sous la loupe binoculaire, au moyen d’une double barquette de tri.
L'identification des taxons de foraminifères (genres, morphogenres, espèces de référence) a été réalisée avec l'aide de C. Ruget. La classification adoptée est celle exposée par C. Ruget en 1985. La détermination des ostracodes a été faite par B. Andreu.

Les résultats de cette étude systématique sont rassemblés sur les tableaux de répartition des foraminifères benthiques et sur ceux des ostracodes.

Les comptages ont été réalisés sur les *Ammodiscus*, les nodosariidés, leurs différentes morphologies (enroulées, en voie de déroulement), et les ostracodes. Par addition, nous obtenons aussi le nombre de foraminifères et de microorganismes totaux par niveaux de prélèvements. La terminologie suivante a été employée pour caractériser le nombre d'individus présents dans un échantillon.

<table>
<thead>
<tr>
<th>Nombre d'individus</th>
<th>1 à 10</th>
<th>11 à 49</th>
<th>51 à 100</th>
<th>101 à 250</th>
<th>250 et plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification</td>
<td>Très peu</td>
<td>Peu</td>
<td>Moyennement</td>
<td>Absent</td>
<td>Très absent</td>
</tr>
<tr>
<td>Répartition</td>
<td>Très peu</td>
<td>Peu</td>
<td>Moyennement</td>
<td>Absent</td>
<td>Très absent</td>
</tr>
</tbody>
</table>

Nous analyserons les divers graphiques de comptage en utilisant le même plan et en examinant successivement les mêmes éléments :

- **Tendance** : tendance générale de la courbe (croissance, décroissance, constance, cyclicité...) et prédominance d'un taxon sur un autre (*Ammodiscus* et nodosariidés) ou d'une forme de nodosariidés sur les autres, dans le cas d'un graphique de comparaison.

- **Coupures** : présence ou absence de coupure(s), majeure(s) ou mineure(s).

- **Groupements** : groupes de prélèvements successifs présentant les mêmes caractéristiques.

- **Discontinuités** : comportement des populations au passage des discontinuités sédimentaires (surface d'inondation maximale, surface de transgression et limite de séquence).

- **Cas particuliers** : observations ponctuelles, prélèvements aberrants, azoïques...

Si l'une de ces cinq caractéristiques n'est pas visible sur le graphique, elle ne sera pas mentionnée dans la description. Donc le sous-paragraphe correspondant ne sera pas noté.

Les fréquences relatives provenant sur l'examen, deux à deux, de trois populations (% *Ammodiscus* et nodosariidés, % ostracodes et nodosariidés et % foraminifères et ostracodes).

- 153-
IV 2. MICROPALÉONTOLOGIE ET STRATIGRAPHIE SEQUENTIELLE

IV 2.1. Distribution des peuplements

IV 2.1.1. Loubressac-Lapoujade

1)- Niveaux de prélèvements (Fig. 31, p. 152; Fig. 6, p. 32)
28 échantillons marneux ont été étudiés, dont :
- 12, dans le Membre des Argilites grises de PJ 1 à PJ 12 (sur une épaisseur d'environ 6 m);
- 11, dans le Membre de Lapoujade de PJ 35 à PJ 46 (5 m);
- 5, dans la Formation de la Barre à Pecten (PJ 50, 56, 60, 63 et 65).
L'échantillon PJ 35 est azoïque.

2)- Tableaux de répartition des foraminifères benthiques (Tab.7, p. 155)

A/ Nombre de taxons

L'étude taxonomique a conduit à l'identification de 37 genres, morphogénres et espèces paléontologiques. Parmi ces 37 morphologies de foraminifères, 31 concernent la famille des Nodosariidae. Celle-ci est représentée par sept genres :

- le genre Lenticulina, 11 espèces pouvant avoir des morphogénres différents (Marginulinopsis, Planularia, Astacolus, Saracenaria et Lenticulina). Au total, 13 morphologies distinctes pour ce taxon (deux espèces ayant deux morphogénres différents);
 - le genre Marginulina, 1 espèce;
 - le genre Nodosaria, 3 espèces;
 - le genre Pseudonodosaria, 2 espèces;
 - le genre Ichtyolaria, 3 espèces;
 - le genre Dentalina, 8 espèces;
 - le genre Lingulina, 1 espèce.

Ammodiscus, Bolivina, Spirillina, Trochamnia, Ceratobuliminidae et Haplophragmium n'ont été étudiés qu'au niveau générique.
<table>
<thead>
<tr>
<th>H0</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginalia gr. prima</td>
<td>Ichthyodaria sulcata</td>
<td>Haplophragmium</td>
<td>Denticulina gr. multiloculata primaeva</td>
<td>Lenticulina prima mg. Lenticulina</td>
<td>Ammodesmus</td>
<td>Nodosaria metensis</td>
<td>Bolivina lascia</td>
<td>Pseudonodosaria metensis</td>
<td>Lingulina gr. tenera-pups</td>
<td>Nodosaria multiloculata</td>
</tr>
<tr>
<td>Spisula</td>
<td>Lenticulina maculina mg. Astacolus</td>
<td>Lenticulina antiquata mg. Marginulinopsis</td>
<td>Lenticulina splendens mg. Astacolus</td>
<td>Lenticulina gr. inequilata mg. Planularia</td>
<td>Dentalia tenerae-obscura</td>
<td>Dentalia nuntialis</td>
<td>Lenticulina sculpita mg. Astacolus</td>
<td>Ichthyodaria nuda</td>
<td>Dentalia gr. fasciata</td>
<td>Trocharina sabiei</td>
</tr>
<tr>
<td>Dentalia exilia</td>
<td>Lenticulina vetusta mg. Marginulinopsis</td>
<td>Nodosaria mutabilis</td>
<td>Lenticulina splendidiss mg. Planularia</td>
<td>Lenticulina speciosa mg. Marginulinopis</td>
<td>Ichthyodaria bicostata-terqueini</td>
<td>Lenticulina prima mg. Astacolus</td>
<td>Dentalia procera</td>
<td>Dentalia maculata</td>
<td>Dentalia gladioliformis</td>
<td>Lenticulina hanaparviana mg. Saracenaria</td>
</tr>
<tr>
<td>Lenticulina radiata mg. Marginulinopis</td>
<td>Caradocelminidae</td>
<td>Lenticulina sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 7 : Coupe de Loubressac-Lapoujade.
Tableau de répartition stratigraphique des taxons de foraminifères benthiques.

-155-
\textit{B/ Comptage}

\# Nombre total de foraminifères (Fig. 32, p. 157)

- \textit{Membre des Argilites grises, PJ 1 à PJ 12}

\textbf{Tendance} : pas d'évolution particulière du graphe. Les prélèvements sont pauvres (PJ 10) à riches (PJ 1).

\textbf{Coupures} : pas de coupure nette, hormis celle induite par l'échantillon PJ 7.

\textbf{Groupements} : à la base, alternance de prélèvements riches (PJ 1, 3 et 5) et de prélèvements moyennement riches (PJ 2, 4 et 6) Cette différence de densité des populations s'estompe vers le haut, le nombre de foraminifères diminuant progressivement pour les échantillons impairs et inversement pour les échantillons pairs.

\textbf{Discontinuités} : la différence du nombre de foraminifères n'est pas significative de part et d'autre de la discontinuité sédimentaire (MFS 4).

- \textit{Membre de Lapoujade PJ 36 à PJ 46}

\textbf{Tendance} : décroissance globale du nombre de foraminifères de l'échantillon PJ 37 (318 organismes) à l'échantillon PJ 46 (83 organismes).

\textbf{Coupures} : pas de coupure nette, exceptée la brusque augmentation de l'échantillon PJ 36 (16 individus) à l'échantillon PJ 37 (318 individus).

\textbf{Discontinuités} : le passage de la discontinuité intra-marnes (MFS 5) ne montre aucune variation du nombre total de foraminifères.

\# Nombre d'\textit{Ammodiscus} (Fig. 33, p. 158)

- \textit{Membre des Argilites grises}

\textbf{Tendance} : le graphe ne montre aucune tendance particulière.

\textbf{Groupements} : on observe de PJ 2 à PJ 8, une alternance d'échantillons pauvres (PJ 3, 5 et 7) et d'échantillons plus riches (PJ 2, 4, 6 et 8).

\textbf{Discontinuités} : près de la discontinuité MFS 4, le nombre d'\textit{Ammodiscus} décroît. Au-dessus, il augmente mais de façon non significative.

- \textit{Membre de Lapoujade}

Tendance à partir de PJ 40, décroissance générale du nombre d'\textit{Ammodiscus}.

\textbf{Coupures} : coupure nette entre les 3 premiers prélèvements (pauvres ou très pauvres en \textit{Ammodiscus}) et les suivants (moyennement abondants puis pauvres).
Figure 32 : Coupe de Loubressac-Lapoujade.
Comptage : microfaune, foraminifères et ostracodes.
Figure 33 : Coupe de Loubressac-Lapoujade.
Comptage : Ammodiscus, nodosariidés, Fréquences relatives.

- 158-
Discontinuités : la coupure signalée ci-dessus, correspond à la surface d’inondation maximale (MFS 5).

- Nombre de nodosariidés (Fig. 33, p. 158)

 Membre des Argilites grises

 Tendance : décroissance générale du graphique de PJ 3 à PJ 11.

 Groupements : alternance de prélèvements pauvres à abondants (PJ 1, 3, 5 et 8) et de prélèvements où les nodosariidés sont absents (PJ 2, 4 et 6).

 Discontinuités : augmentation du nombre de nodosariidés au passage de la discontinuité sédimentaire (MFS 4), mais de façon non significative.

- **Membre de Lapoujade**

 Tendance : il est impossible de dégager une tendance générale du graphique, étant donné que seuls 4 échantillons (non successifs) contiennent des nodosariidés.

 Coupures : coupure nette entre les prélèvements de la base du membre, PJ 37 et PJ 39, respectivement très riches et moyennement riches en nodosariidés, et les prélèvements suivants très pauvres à dépourvus de nodosariidés.

 Discontinuités : cette coupure différencie les échantillons de part et d’autre de la surface d’inondation maximale (MFS 5).

- Comparaison du nombre de nodosariidés et d’*Ammodiscus*

 Ce graphique montre un comportement très antagoniste des *Ammodiscus* et des nodosariidés. Ce phénomène s’exprime de deux façons différentes :

 - dans la partie basale du Membre des Argilites grises, les proportions s’inversent d’un prélèvement au suivant de PJ 2 à PJ 6;
 - dans le Membre de Lapoujade, l’opposition est très nette de part et d’autre de la surface d’inondation maximale (MFS 5).

- Nombre des différentes morphologies des nodosariidés (Fig. 33, p. 158)

 Membre des Argilites grises

 Tendance : prédominance générale des morphologies droites (PJ 1 à PJ 11) et décroissance régulière de leur nombre (PJ 3 à PJ 11). Même évolution pour les morphologies
enroulées, mais pour un nombre de foraminifères moins important. Pas d'évolution particulière pour les morphologies en voie de déroulement.

Discontinuités : à l'approche de la surface d'inondation maximale (MFS 4), les morphologies en voie de déroulement dominent les autres. Leur nombre augmente légèrement au-dessus de la discontinuité. Le nombre de morphologies enroulées et droites reste constant de PJ 9 à PJ 12.

Cas particuliers : le prélèvement le plus riche en nodosariidés contient en majorité des morphologies droites (PJ 3).

- Membre de Lapoujade

Tendance : décroissance important du nombre de chaque forme de nodosariidés de PJ 37 à 39.

Coupures et Discontinuités : coupure nette induite par l'absence de nodosariidés au-dessus de la surface d'inondation maximale (MFS 5).

Cas particuliers : dominance des morphologies droites pour le prélèvement PJ 37 très riche en nodosariidés.

3) Tableau de répartition des ostracodes (Tab. 8)

A/ Nombre de taxons : 7 genres, 8 espèces.
- le genre Polycopa, 1 espèce ;
- le genre Pseudohealdia, 1 espèce ;
- le genre Ogmococheilla, 2 espèces dont 1 nouvelle ;
- le genre Kinkelinella, 1 espèce nouvelle ;
- le genre Gramannella, 1 espèce ;
- le genre Liasina, 1 espèce ;
- le genre Pontocyrella ; 1 espèce.

B/ Comptage

Nombre d'ostracodes (Fig. 32, p. 157)

- Membre des Argillites grises

Tendance : décroissance générale et forte du nombre d'ostracodes de PJ 1 (400 individus) à PJ 12 (40 individus).
<table>
<thead>
<tr>
<th>LOUBRESSAC</th>
<th>Polycyclostra</th>
<th>Pseudolimnadia stenoptera</th>
<th>Quinqueloculina lapugaeana</th>
<th>Quinqueloculina exacta</th>
<th>Grammatolithina spina</th>
<th>Grammatolithina hirondella</th>
<th>Limnaea hirondella</th>
<th>Pterocyclus degua</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJ 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 39</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 12</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 8 : Coupe de Loubressac-Lapoujade.
Tableau de répartition stratigraphique des taxons d'ostracodes.

Coupures : pas de coupure visible.

Groupements : alternance de prélèvements très riches (PJ 1, 3, 5 et 8) et de prélèvements où les ostracodes sont très peu nombreux (PJ 2) ou absents (PJ 4, 6 et 7).

Discontinuités : même nombre d'ostracodes de part et d'autre de la surface d’inondation maximale (MFS 4).

- **Membre de Lapoujade**

Tendance : une tendance générale est difficile à dégager, étant donné que seuls 3 échantillons contiennent des ostracodes.

Coupures : coupure entre les prélèvements de la base du membre (PJ 36, 37 et 39) et les suivants (PJ 40 à 46).

Discontinuités : cette coupure signalé le passage de la surface d’inondation maximale (MFS 5).

- 161-
4) Fréquence relative (Fig. 33, p. 158)

% *Ammodiscus* et nodosariidés

- *Membre des Argilites grises*

Tendance : pourcentage d'*Ammodiscus* en moyenne nettement supérieur à celui des nodosariidés. Décroissance du pourcentage d'*Ammodiscus* dans la partie sommitale du membre.

- *Membre de Lapoujade*

Coupures et **Discontinuités** : les échantillons PJ 37 et PJ 39 ont une proportion de nodosariidés très importante (respectivement, 100 et 85%) alors qu’il n’en existe plus au-dessus de la surface d’inondation maximale (MFS 5).

% ostracodes et nodosariidés

- *Membre des Argilites grises*

Tendance : les proportions d’ostracodes et de nodosariidés restent à peu près constantes (en moyenne, 60 à 70% d’ostracodes, et 30 à 40% de nodosariidés).

Cas particuliers : les échantillons PJ 4, 6 et 7 ne contiennent ni ostracodes ni nodosariidés.

- *Membre de Lapoujade*

Tendance : pas de tendance générale.

Coupures : 2 coupures peuvent être dégagées :
- de PJ 36 à PJ 37, nous passons de 100% d’ostracodes à 10% ;
- au-dessus de PJ 39, les prélèvements ne contiennent ni ostracodes ni nodosariidés ;

Discontinuités : la seconde coupure concerne le passage de la surface d’inondation maximale (MFS 5).

% foraminifères et ostracodes

- *Membre des Argilites grises*

Tendance : décroissance générale du pourcentage d’ostracodes de PJ 1 à PJ 12 (70 à 30%). Le pourcentage de foraminifères est en moyenne supérieur à celui des ostracodes.

Cas particuliers : 100% de foraminifères dans les échantillons, PJ 2, 4, 6 et 7.
- Membre de Lapoujade

Tendance : la proportion en foraminifères est très nettement supérieure à celle des ostracodes.

5) Nombre total de microorganismes (Fig. 32, p. 157)

- Membre des Argillites grises

Tendance : décroissance générale du graphique de PJ 1 à PJ 12.

Groupements : de PJ 1 à PJ 6, alternance de prélèvements riches en microfaune (PJ 1, 3 et 5), et de prélèvements moyennement riches (PJ 2, 4 et 6).

Discontinuités : le passage de la surface d’inondation maximale (MFS 4) entraîne une légère augmentation du nombre de microfossiles.

- Membre de Lapoujade

Tendance : décroissance générale du nombre d’individus de PJ 37 à PJ 46.

Cas particuliers : l’échantillon PJ 37 possède une microfaune très nombreuse (350 organismes) comparée à celle des autres prélèvements de ce membre (50 à 60 en moyenne).

6) Conclusion

- Membre des Argillites grises

Il est très difficile de dégager, pour ces 12 niveaux de prélèvements, une évolution particulière de la microfaune. La seule observation qui se répète pour tous les graphiques réside dans le comportement opposé des peuplements micropaléontologiques, d’un prélèvement au suivant, pour les six premiers échantillons. L’étude lithologique a montré (cf. II 2., niveau 1) l’existence d’une alternance de deux faciès marneux à ce niveau.

Les marnes de teinte gris noir contiennent donc principalement :

- des ostracodes en grande quantité ;
- des nodosariidés avec une prédominance des morphologies droites ;
- les *Ammodiscus* sont faiblement représentés par rapport aux autres microorganismes.

Les marnes de teinte marron, beaucoup plus indurées, se caractérisent par l’absence d’ostracodes et de nodosariidés, et une forte proportion
d’*Ammodiscus*. Cet antagonisme entre *Ammodiscus* et nodosariidés reste valable pour les autres prélèvements de ce membre.

La surface d’inondation maximale (MFS 4) située entre PJ 11 et PJ 12 ne coïncide pas avec des changements visibles dans le comportement des populations.

- **Membre de Lapoujade**

Il existe une différence très significative du contenu microfaunique des échantillons prélèvés de part et d’autre de la surface d’inondation maximale (MFS 5).

Les microfaunes des échantillons (PJ 36, 37 et 39) caractérisent l’intervalle transgressif par :

- une faible quantité d’*Ammodiscus* ;
- un grand nombre de nodosariidés, pour lesquels prédominent les morphologies droites et en voie de déroulement ;
- la présence d’ostracodes dans de faibles proportions,

le prisme de haut niveau marin (PJ 40 à PJ 46), par :

- une grande quantité d’*Ammodiscus* ;
- la disparition des nodosariidés et des ostracodes.

Le contenu microfaunique général des échantillons diminue de l’intervalle transgressif vers le prisme de haut niveau marin.

Le nombre de nodosariidés est beaucoup plus important dans l’intervalle transgressif que dans le prisme de haut niveau marin.

- **Comparaison entre les unités lithologiques**

Le peu d’informations apportée par l’étude micropaléontologique du Membre des Argilites grises ne permet pas de proposer des comparaisons significatives entre ce membre et le Membre de Lapoujade.

Nous pouvons juste signaler que :

- les *Ammodiscus* sont présents dans des proportions plus grande dans le TST 4 que dans le TST 5 ;
- le pourcentage de foraminifères est supérieur à celui des ostracodes, et augmente significativement de l’intervalle transgressif vers le prisme de haut niveau marin, dans les deux membres.
IV.2.1.2 Magnagues

1)- Niveaux de prélèvements (Fig. 31, p. 152; Fig. 9, p. 44)
14 échantillons ont été étudiés, dont :
- 8, dans le Membre de Lapoujade, de MG A à MG I (sur une épaisseur de 4 m);
- 6, dans le Membre des Schistes carton (Toarcien) de MG 75 à MG 81 (Fig. 13). Ces prélèvements n'ont livré que quelques moules internes de nodosariidés, indéterminables et aucun ostracodes.

2)- Tableau de répartition des foraminifères benthiques (Tab. 9)

A) Nombre de taxons : 24 genres, morphogénres et espèces paléontologiques.

Famille des Nodosariidae : 6 genres, 23 morphologies.
- genre Lenticulina : 10 espèces, 12 morphologies ;
- genre Marginulina : 1 espèce ;
- genre Nodosaria : 1 espèce ;
- genre Pseudonodosaria : 1 espèce ;
- genre Ichthyolaria : 6 espèces ;
- genre Dentalina : 1 espèce ;
- genre Vaginulina : 1 espèce.

Autre genre, Ammodiscus.

Tableau 9 : Coupe de Magnagues.
Tableau de répartition stratigraphique des taxons de foraminifères benthiques.

- 165-
B/ Comptage (Fig. 34, p. 167)

Nombre total de foraminifères

Tendance : pas de tendance générale.

Coupures et Groupements : coupure entre les deux premiers prélèvements (MG A et B) très riche en foraminifères, et les suivants (MG C, D, E, F, G et I) pauvres à moyennement riches.

Discontinuités : légère inversion de tendance au passage de la surface d’inondation maximale (MFS 5) : décroissance du nombre d’individus de MG E à MG F, puis croissance de MG G à MG I.

Nombre d’*Ammodiscus*

Tendance : pas de tendance générale.

Coupures : coupure entre les 4 premiers prélèvements où les *Ammodiscus* sont absents (MG A, B et D) ou très rares (MG C, 2 individus), et les 4 derniers où le nombre d’*Ammodiscus* varie de 12 à 43.

Discontinuités : légère inversion de tendance au passage de la surface d’inondation maximale (MFS 5).

Nombre de nodosariidés

Tendance : pas de tendance générale.

Coupures et Groupements : coupure nette entre les 2 premiers prélèvements très riches en nodosariidés (MG A et B), et les suivants, pauvres (MG C, D, F et G) à moyennement riches (MG I).

Discontinuités : inversion de tendance au passage de la surface d’inondation maximale (MFS 5).

Comparaison du nombre de nodosariidés et d’*Ammodiscus*

Elle est difficile à réaliser et n’apporte pas de renseignements, hormis le fait que plus il y a de nodosariidés, moins les *Ammodiscus* sont fréquents, et inversement.

Comparaison du nombre des différentes morphologies de nodosariidés

Tendance : chaque morphe de nodosariidés suit de façon générale la même évolution que celle décrite pour le nombre total de nodosariidés.

Pas de prédominance importante d’une forme sur les autres, excepté l’échantillon MG B nettement plus riche en nodosariidés de morphologie en voie de déroulement.

Coupures, Groupements et Discontinuités : même constatation pour chaque forme de nodosariidés que pour leur nombre total.
3) Tableau de répartition des ostracodes (Tab. 10)

A/ Nombre de taxons : 3 genres, 5 espèces.
- genre Ogmococha : 1 espèce ;
- genre Ogmocochella : 2 espèces, dont une nouvelle;
- genre Liasina : 2 espèces.

<table>
<thead>
<tr>
<th>MAGNAGUES</th>
<th>Ogmocochella contractula</th>
<th>Ogmocochella graudi</th>
<th>Liasina striatula</th>
<th>Liasina sp.</th>
<th>Ogmocochella liradiata</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG I</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG G</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG F</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG E</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG D</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG C</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG B</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG A</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 10 : Coupe de Magnagues.
Tableau de répartition stratigraphique des taxons d’ostracodes.

B/ Comptage (Fig. 34, p. 167)

Nombre d’ostracodes

Tendance : le nombre d’ostracodes est croissant de MG A à MG C, puis décroissant de MG C à MG G.

Coupures : coupure entre les 5 premiers prélèvements riches (MG A) à très riches (MG B, C, D et E), et les 3 derniers, pauvres en ostracodes.

Discontinuités : légère et non significative inversion de tendance au passage de la surface d’inondation maximale (MFS 5).

Cas particuliers : le prélèvement MG C contient plus du double d’ostracodes (500 individus) que le plus riche des autres prélèvements étudiés à Magnagues.

4) Fréquence relative (Fig. 34, p. 167)

% Ammodiscus et nodosariidés

Tendance : décroissance du pourcentage d’Ammodiscus de MG E à MG I.

Coupures : coupure très nette entre les 4 premiers prélèvements (93 à 100% de nodosariidés), et les 4 derniers (19 à 74%).
Discontinuités : aucune variation significative des proportions en *Ammodiscus* et nodosariidés de part et d'autre de la surface d'inondation maximale (MFS 5).

% ostracodes et nodosariidés

Tendance : le pourcentage d'ostracodes est en moyenne plus élevé que celui des nodosariidés. Il croît de MG A (25%) à MG C (95%), puis décroît de MG C à MG I (30%).

Coupures : pas de coupure particulière, hormis l'inversion de tendance au niveau de MG C.

Groupements : les prélèvements MG C, D et E ont une proportion en ostracodes significativement plus importante que celle des autres échantillons.

Discontinuités : pas de variation de part et d'autre de la surface d'inondation maximale (MFS 5).

% foraminifères et ostracodes

Même description et mêmes observations que pour le graphique précédent.

5)- Nombre total de microorganismes (Fig. 34, p. 167)

Tendance croissance du nombre de microfossiles de MG A à MG C, décroissance de MG C à MG G, puis croissance de MG G à MG I.

Coupures : coupure entre les 3 premiers prélèvements très riches en microfaune, et les suivants, riches (MG D, E et I) à moyennement riches (MG F et G).

Discontinuités : légère inversion de tendance au passage de la surface d'inondation maximale (MFS 5). Le nombre de microfossiles atteint son minimum de part et d'autre de cette discontinuité sédimentaire.

6)- Conclusion

Aucun graphique ne montre une différence significative des peuplements micropaléontologiques de part et d'autre de la surface d'inondation maximale du membre de Lapoujade :

- celui du nombre d'*Ammodiscus* sépare nettement les 4 premiers prélèvements des 4 derniers ;
- pour les nodosariidés, une rupture est très marquée entre les deux premiers échantillons et les suivants. Ils sont représentés en majorité par des morphologies en voie de déroulement dans l'intervalle transgressif et des morphologies enroulées dans le prisme de haut niveau marin.
Les proportions de foraminifères augmentent de l'intervalle transgressif vers le prisme de haut niveau marin.

Seul le graphique du nombre d'ostracodes montre une inversion de tendance au niveau de la surface d'inondation maximale, et sépare un intervalle transgressif riche en ostracodes d'un prisme de haut niveau marin beaucoup plus pauvre. La même observation peut être faite pour la distribution de la microfaune totale (en raison du poids des Ostracodes dans ces comptages).

IV 2.1.3. Puy d’Issolud

1)- Niveaux de prélèvements (Fig. 31, p. 152; Fig. 8, p. 42)
15 échantillons ont été prélevés dans le Membre des Argilités grises (Pl 20 à Pl 42).

2)- Tableau de répartition des foraminifères benthiques (Tab. 11)

À/ Nombre de taxons : 6 genres, 9 espèces.
Famille des *Nodosariidae* : 5 genres, 8 espèces.
- genre *Lenticulina* : 3 espèces ;
- genre *Marginulina* : 1 espèce ;
- genre *Ichtyolaria* : 1 espèce ;
- genre *Dentalina* : 2 espèces ;
- genre *Lingulina* : 1 espèce ;

Autre genre, *Ammodiscus*.

B/ Comptage (Fig. 35, p. 172)

Nombre d’*Ammodiscus*

Tendance : une tendance générale est difficile à dégager. Deux cycles semblent toutefois se dégager si l'on excepte PI 20 :
- de PI 21 à PI 25, le nombre d'*Ammodiscus* est globalement croissant de PI 21 à PI 24, puis il décroît jusqu'à PI 25 ;
- de PI 27 à PI 42, le nombre d'*Ammodiscus* est croissant de PI 27 à PI 30, puis décroissant de PI 30 à PI 42.

Coupures et Groupements : coupure minime à la limite entre les deux cycles.

Discontinuités : cette coupure, qui traduit une inversion de tendance dans le nombre d'*Ammodiscus*, correspond à la surface d'inondation maximale (MFS 4).
<table>
<thead>
<tr>
<th>PUY D'ISSOLUD</th>
<th>Lingulina gr. tenera-papa</th>
<th>Dentella sp.</th>
<th>Lenticulina antiquata m.g. Marginulinopsis</th>
<th>Marginulina gr. prima</th>
<th>Lenticulina prima m.g. Actinolus</th>
<th>Dentella sp.</th>
<th>Lebolyolaria biostrata-xeremi</th>
<th>Ammodiscus</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 11 : Coupe du Puy d’issolud.
Tableau de répartition stratigraphique des taxons de foraminifères benthiques.

Nombre total de foraminifères

Etant donné que les foraminifères sont très majoritairement représentés par les *Ammodiscus* (excepté PI 20), les observations sont identiques à celles du graphique du nombre d'*Ammodiscus*.

Nombre de nodosariidés

Comparaison du nombre de nodosariidés et d'*Ammodiscus*

Nombre des différentes morphologies des nodosariidés

Les nodosariidés ne sont présents qu’aux niveaux de 5 prélèvements, et dans de faible quantité (maximum PI 20, 21 individus). Leur nombre décroît de PI 20 à PI 22. Au-dessus, seuls les échantillons PI 32 et PI 38 contiennent respectivement 1 et 3 nodosariidés.

3)- Tableau de répartition des ostracodes (Tab. 12)

Seuls les prélèvements PI 20, 21, 32, 24 et 25 contiennent des ostracodes déterminables. Ces derniers sont absents dans les échantillons PI 22, 27, 30, 32, 34 et 42.

Al Nombre de taxons : 3 genres, 4 espèces.
- genre *Cythereelloidea* : 1 espèce ;
Figure 35 : Coupe du Py d'issoude. Comptage.
- genre *Ogmoconchella* : 2 espèces dont une nouvelle ;
- genre *Gramannella* : 1 espèce.

<table>
<thead>
<tr>
<th>PUY D'ISSOULD</th>
<th>Ogmoconchella arcingi</th>
<th>Ogmoconchella lapoujadei</th>
<th>Ogmoconchella gnudi</th>
<th>Gramannella apocondreus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 27</td>
<td></td>
<td></td>
<td></td>
<td>MFS 4</td>
</tr>
<tr>
<td>Pi 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 12 : Coupe du Puy d'Issolud.
Tableau de répartition stratigraphique des taxons d'ostracodes.

B/ Comptage (Fig. 35, p. 172)

- Nombre d'ostracodes

Tendance : décroissance générale du nombre d'ostracodes.

Coupures : pas de coupure nette.

Groupements : 2 ensembles se dégagent :
- de Pi 20 à Pi 25, les prélèvements sont moyennement riches (Pi 20), pauvres (Pi 21, 23 et 24) à très pauvres (Pi 25).
- de Pi 27 à Pi 42, les ostracodes sont absents (Pi 27, 30, 32, 34 et 42), ou présents en faible quantité (Pi 28, 36, 38 et 40).

Discontinuités : la limite entre ces deux ensembles se situe au niveau de la surface d'inondation maximale (MFS 4).

4) Nombre total de microorganismes

Tendance : tendance générale décroissante de Pi 20 à Pi 42.

Coupures : pas de coupure nette.

Groupements et Discontinuités : les ostracodes étant beaucoup plus nombreux que les foraminifères, les deux ensembles individualisés précédemment semblent une nouvelle fois
se dégager, mais plus discrètement. Ils sont aussi séparés au niveau de la surface
d’inondation maximale (MFS 4).

5) Conclusion

Les ostracodes sont nombreux dans l’intervalle transgressif, alors qu’ils sont assez rares à inexistants dans le prisme de haut niveau marin. Les nodosariidés, absents dans la plupart des prélèvements, n’apportent pas de renseignements supplémentaires.

IV 2.1.4. Gintrac

1) Niveaux de prélèvements (Fig. 31, p. 152; Fig. 8, p. 42)

Les 26 échantillons étudiés ont été prélevés dans le Membre des Argiles grises (GI 10 à 47).

2) Tableau de répartition des foraminifères benthiques (Tab. 13)

A/ Nombre de taxons : 34 genres, morphogenres et espèces paléontologiques.

Famille des Nodosariidae : 8 genres, 31 morphologies.

- genre Lenticulina : 12 espèces, 15 morphologies ;
- genre Marginulina : 2 espèces ;
- genre Nodosaria : 1 espèce ;
- genre Pseudonodosaria : 1 espèce ;
- genre Ichtyolaria : 5 espèces ;
- genre Dentalina : 5 espèces ;
- genre Lingulina : 1 espèce ;
- genre Vaginulina : 1 espèce.

Autre genres, Ammodiscus, Bithelina et Bolivina.

B/ Comptage

Nombre total de foraminifères (Fig. 36, p. 176)

Tendance : si l’on excepte les 4 prélèvements qui représentent des pics (GI 16, 20, 24 et 29), ce graphique montre une décroissance globale et légère du nombre de foraminifères. C’est d’ailleurs aussi le cas pour les échantillons exclus.

- 174-
Tableau 13 : Coupe de Gintrac.
Tableau de répartition stratigraphique des taxons de foraminifères benthiques.

- 175 -
Figure 36 : Coupe de Gintrac.
Comptage : microfaune, foraminifères et ostracodes.
- 176-
Coupures: aucune coupure nette n’est à signaler, hormis celles engendrées par les gisements riches en foraminifères cités ci-dessus.

Nombre d’Ammodiscus (Fig. 37, p. 177)

Tendance: pas de tendance particulière du nombre d’Ammodiscus

Coupures: 5 coupures assez nettes peuvent être dégagées, entre Gl 13 et Gl 14, entre Gl 14 et Gl 15, entre Gl 21 et Gl 22, entre Gl 24 et Gl 25, et entre Gl 38 et Gl 42.

Groupements: ces coupures entraînent la formation de 6 groupes de prélèvements:
- Gl 10 à Gl 13, échantillons pauvres à moyennement riches;
- Gl 14, très pauvre;
- Gl 15 à Gl 21, pauvres à moyennement riches;
- Gl 22 à Gl 24, très pauvres;
- Gl 25 à Gl 42, pauvres à moyennement riches;
- Gl 42 à Gl 47, très pauvres.

Nombre de nodosariidés (Fig. 37, p. 177)

Tendance: mis à part Gl 16 et Gl 24, tous les prélèvements possèdent un nombre de nodosariidés relativement constant et peu important (23 des 26 échantillons de cette coupe contiennent moins de 40 individus).

Coupures: pas de coupure, hormis celles induites par Gl 16 et Gl 24, riches en nodosariidés.

Groupements: de Gl 30 à Gl 47, les nodosariidés sont moins nombreux que dans les prélèvements sous-jacents.

Comparaison du nombre de nodosariidés et d’Ammodiscus

On observe une fois de plus le même antagonisme entre Ammodiscus et nodosariidés.

Nombre des différentes morphologies des nodosariidés (Fig. 37, p. 177)

Tendance: prédominance globale des morphologies droites quand les nodosariidés sont en grand nombre (Gl 16, 20 et 24). Légère prédominance des morphologies en voie de déroulement quand ils sont moins nombreux. D’une manière générale les morphologies enroulées sont les moins représentées.

Pas de tendance particulière du graphique.

Coupures, Discontinuités et Cas particuliers: mêmes observations que pour le nombre total de nodosariidés.

3): Tableau de répartition des ostracodes (Tab. 14)

A/ Nombre de taxons: 7 genres, 9 espèces.
- le genre *Cytherelloidea*, 1 espèce ;
- le genre *Pseudoheelidia*, 1 espèce ;
- le genre *Ogmoconchella*, 3 espèces, dont une nouvelle ;
- le genre *Kinkelinella*, 1 espèce nouvelle ;
- le genre *Gramannella*, 1 espèce ;
- le genre *Liasina*, 1 espèce ;
- le genre *Lophodontina*, 1 espèce.

<table>
<thead>
<tr>
<th>GINTRAC</th>
<th>Cytherelloidea amingi</th>
<th>Pseudoheelidia truncaata</th>
<th>Ogmoconchella lapujadei</th>
<th>Ogmoconchella grunewel</th>
<th>Ogmoconchella australiensis</th>
<th>Kinkelinella australiensis</th>
<th>Gramannella australiensis</th>
<th>Liasina lanceolata</th>
<th>Lophodontina pumicosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI 47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 14: Coupe de Gintrac. Tableau de répartition stratigraphique des taxons d’ostracodes.

Bl Comptage

Nombre d’ostracodes (Fig. 36, p. 176)

Tendance : constance du nombre d’ostracodes de GI 10 à GI 15, puis décroissance globale de GI 16 à GI 47.

- 179-
Coupures : 2 coupures majeures :
- entre GI 15, ne contenant pas d'ostracodes, et GI 16 (879 individus) ;
- entre GI 29 et GI 30.

Groupements : 3 groupes de prélèvements peuvent être individualisés :
- de GI 10 à GI 15, les ostracodes sont absents ou très peu nombreux (6.5 individus en moyenne) ;
- de GI 16 à GI 29, ils sont peu abondants à très abondants (186 individus en moyenne) ;
- de GI 30 à GI 47, ils sont absents ou faiblement représentés (11 individus en moyenne).

Cas particuliers : GI 16 contient 879 ostracodes. C'est le prélèvement le plus riche de tous ceux étudiés pour ce travail. Ce chiffre est d'autant plus spectaculaire que l'échantillon précédent ne contient aucun ostracode.

4) Fréquence relative (Fig. 37, p. 177)

% Ammodiscus et nodosariidés

Tendance : les proportions en Ammodiscus sont en moyenne très légèrement supérieure à celles des nodosariidés (54 % contre 46 %).

Sur ce graphique deux cycles sont mis en évidence :
- de GI 10 à GI 24, le pourcentage d'Ammodiscus est globalement croissant de GI 10 à GI 15, puis décroissant de GI 15 à GI 24 ;
- de GI 24 à GI 47, le pourcentage d'Ammodiscus est croissant de GI 24 à GI 30, puis décroissant de GI 30 à GI 47.

Coupures : une première coupure nette se situe au niveau de prélèvement GI 24, limite entre les deux cycles décrits ci-dessus. Une seconde coupure, minime, entre GI 38 et GI 42, où le pourcentage d'Ammodiscus chute brutalement.

Groupements : cf. Tendance

% ostracodes et nodosariidés et % foraminifères et ostracodes

Ces deux graphiques montrent à première vue des caractéristiques très similaires, même si les contrastes sont moins marqués pour le second. Ceci est dû au fait que pour la grande majorité des prélèvements, le nombre d'ostracodes est très nettement supérieur à celui des nodosariidés ou des foraminifères en général. Il ne sera donc fait qu'une seule description pour les 2 groupes.

Deux interprétations seront exposées car il semble que le graphique est fortement influencés par l'absence d'ostracodes en GI 15 et GI 30.

. première interprétation excluant les prélèvements GI 15 et GI 30.

Tendance. Coupures et Groupements : 2 cycles sont mis en évidence :

- 180-
- de GI 10 à GI 25, le pourcentage d'ostracodes est globalement croissant de GI 10 à GI 18, puis décroissant jusqu'à GI 25 ;
- de GI 25 à GI 47, croissance du pourcentage d'ostracodes de GI 25 à GI 27, puis décroissance de GI 27 à GI 47.

. seconde interprétation en tenant compte des coupures provoquées par les échantillons GI 15 et GI 30.

Tendance, Coupures et Groupements: 3 groupes se dégagent de ces graphiques :
- de GI 10 à GI 15, les ostracodes sont largement minoritaires ;
- de GI 16 à GI 29, l'inversion de tendance se traduit par une large domination des ostracodes ;
- de GI 31 à GI 47, le pourcentage d'ostracodes diminue par rapport à celui du deuxième groupe dans le premier graphique (ostracodes et nodosariidés). Il est nettement inférieur à celui des foraminifères pour le deuxième graphique.

5)- Nombre total de microorganismes (Fig. 36, p. 176)

Ce graphique montre exactement les mêmes tendances, coupures et groupements de prélèvements que celui du nombre d'ostracodes par niveaux de prélèvements. Le nombre de microfossiles par échantillons augmente de 40 à 200 individus, mais n'influe en rien sur l'évolution générale du graphe.

6)- Conclusions

Quatre repères lithologiques sont à notre disposition pour proposer une hypothèse de découpage en termes de stratigraphie séquentielle :
- GI 16, niveau de meules calcaires ;
- GI 25, surface oxydée ;
- GI 27, série de liserés ferrugineux ;
- GI 29, surface très bioclastique et oxydée.

Trois d'entre eux correspondent à des coupures ou des limites de groupes de prélèvements au sein des différents graphiques étudiés :
- la coupure entre GI 15 et GI 16 est fortement prononcée au niveau de tous les graphiques, excepté par celui des *Ammodiscus* ;
- la coupure entre GI 24 et GI 25 est marquée dans de moindres proportions que la précédente, mais dans tous les graphiques ;
- la coupure entre GI 29 et GI 30 est moins évidente à définir, mais elle correspond, au sein d’une majorité de graphiques, à la limite entre deux groupes de prélèvements (GI 16 à GI 29 et GI 30 à GI 47).

Trois ensembles ayant des caractéristiques différentes se dégagent des observations des données micropaléontologiques, de bas en haut.

1. **GI 10 à GI 15** :
 - ostracodes très rares à inexistants ;
 - faible quantité de foraminifères ;
 - prédominance des *Ammodiscus* sur les nodosariidés.

2. **GI 16 à GI 29** :
 - ostracodes très nombreux ;
 - nodosariidés abondants, les morphologies doites sont les plus représentées ;
 - prédominance des nodosariidés sur les *Ammodiscus* ;
 - le nombre de microfossiles est globalement plus important que dans le premier groupe.

Ce groupement d’échantillons peut être divisé en deux sous-ensembles (GI 16 à GI 24 et GI 25 à GI 29). Ce découpage est du au pic d’*Ammodiscus*, de nodosariidés et d’ostracodes du prélèvement GI 24, car les deux sous-groupes ne montrent pas de caractéristiques significativement différentes.

3. **GI 30 à GI 47** :
 - ostracodes rares ou absents ;
 - nodosariidés rares ou absents, prédominance des morphologies en voie de déroulement ;
 - les *Ammodiscus* sont plus nombreux que les nodosariidés ;
 - le nombre total de microorganismes est nettement moins grand que dans le deuxième groupe.

Hypothèse de découpage en cortèges sédimentaires de la série marneuse homogène de Ginrac

Grâce aux principes ainsi énoncés, nous pouvons maintenant proposer une interprétation des données micropaléontologiques et lithologiques de la série marneuse de Ginrac.
De haut en bas, nous obtenons la succession suivante :

- le groupe GI 30 à GI 47, correspondant à l'alternance marne-grès du Membre des Argilités grises, présentent les caractéristiques micropaléontologiques d'un prisme de haut niveau marin ;

- le groupe sous-jacent, GI 16 à GI 29, possède de nombreuses surfaces oxydées et/ou bioclastiques. Les données de la microfaune sont comparables à celles des intervalles transgressifs des autres coupes, pour le nombre d'ostracodes, de foraminifères et de microorganismes en général ;

- au-dessous le groupe, GI 10 à GI 15, possèdent à première vue les caractéristiques d'un prisme de haut niveau marin. La logique de succession des cortèges sédimentaires voudrait que l'on y voit un prisme de bas niveau marin. Malheureusement, aucun prélèvement n'ayant été effectué en bas niveau marin sur les autres coupes, les corrélations micropaléontologiques sont impossibles à réaliser. Dans l'état actuel de nos interprétations nous ne pouvons donc pas nous prononcer sur la nature de ce cortège sédimentaire.

En résumé, nous serions en présence à Gintrac, dans l'ordre stratigraphique :

- d'un prisme de bas niveau marin (LST 3) ou d'un prisme de haut niveau marin (HST 3), de GI 10 à GI 15 ;
- d'une surface de transgression (TS 4) ou d'une limite de séquence-surface de transgression (SB-TS 4) entre GI 15 et GI 16 ;
- d'un intervalle transgressif (TST 4) de GI 16 à GI 29. Ce cortège sédimentaire possède deux pulsations de GI 16 à GI 24, puis de GI 25 à GI 29, qui peuvent être interprétées comme deux paraséquences ;
- d'une surface d'inondation maximale (MFS 4) entre GI 29 et GI 30, matérialisée par une surface ferrugineuse et bioclastique ;
- d'un prisme de haut niveau marin (HST 4) de GI 30 à GI 47.

IV 2.1.5 Turenne

1) Niveaux de prélèvements (Fig. 31, p. 152; Fig. 10, p. 46)

16 échantillons ont été prélevés :

- 7, dans le Membre des Argilités grises, sur une épaisseur de 4 m (TU 13, 14, 16, 17, 23, 27 et 29);
- 7, dans le Membre de Lapoujade, 4.5 m (TU 31, 32, 33, 34, 36, 38 et 40);
- 2, dans la Formation de la Barre à Pecten (TU 49 et TU 50).
2) Tableau de répartition des foraminifères benthiques (Tab. 15)

A/ Nombre de taxons : 28 genres, morphogènes et spécies paléontologiques.
Famille des Nodosariidae : 7 genres, 26 morphologies.
- genre Lenticulina : 15 espèces, 17 morphologies ;
- genre Marginulina : 1 espèce ;
- genre Nodosaria : 1 espèce ;
- genre Pseudonodosaria : 1 espèce ;
- genre Ichtyolaria : 3 espèces ;
- genre Dentalina : 2 espèces ;
- genre Vaginula : 1 espèce.

Autres genres, Ammodiscus et Haplophragmium.

B/ Comptage

Nombre total de foraminifères (Fig. 38, p. 186)

- Membre des Argilites grises (TU 13 à TU 29)

Tendance : décroissance générale du nombre de foraminifères de TU 13 à TU 27, puis augmentation de TU 27 à TU 29.
Coupures : pas de coupure visible sur ce graphique.

- Membre de Lapoujade (TU 31 à TU 50)

Tendance : excepté l'échantillon TU 31, croissance générale du nombre de foraminifères de TU 32 à TU 50.
Coupures : coupure très nette entre le premier échantillon TU 31 (197 individus) et le suivant TU 32 (25 individus).
Groupements : la croissance générale signalée en Tendance n'est pas régulière mais alternante.
Discontinuités : le nombre de foraminifères est plus important au-dessus de la surface d'inondation maximale, qu'au-dessous.
Cas particuliers : le prélèvement immédiatement situé au-dessus de la surface de transgression (TS 5) contient un nombre de foraminifères beaucoup plus important que les autres prélèvements du Membre de Lapoujade.
Tableau 16 : Coupe de Turenne.

Tableau de répartition stratigraphique des taxons de foraminifères benthiques.
Figure 38 : Coupe de Turenne. Comptage : microfaune, foraminifères et ostracodes.
Figure 39 : Coupe de Turenne. Comptage : Anmodiscus, nodosaridès. Fréquences relatives.
Nombre d’*Ammodiscus* (Fig. 39, p. 187)

- *Membre des Argilites grises*

 Tendance : décroissance générale du nombre d’*Ammodiscus* de TU 16 à TU 29.

 Coupures : 2 coupures nettes entre :

 - les 2 premiers échantillons (TU 13 et 14) et les 4 suivants (TU 16 à 27) ;

 - les échantillons TU 27 et TU 29.

 Groupements : groupement de prélèvements, pauvres à moyennement abondants, de TU 16 à TU 27.

Membre de Lapoujade et Formation de la Barre à Pecten

Tendance : pas de tendance générale du graphique

Coupures : 2 coupures nettes :

- la première, à la base, entre TU 31 et TU 32 ;
- la seconde, au sommet, entre TU 40 et TU 49.

Discontinuités : les *Ammodiscus* sont absents au-dessus de la surface d’inondation maximale (MFS 5).

Nombre de nodosariidés (Fig. 33)

- *Membre des Argilites grises*

 Tendance : décroissance régulière du nombre de nodosariidés de TU 13 à TU 27.

 Coupures : 2 coupures, entre TU 14 et TU 16, et entre TU 27 et TU 29.

 Groupements : groupement de prélèvements pauvres à très pauvres en nodosariidés de TU 16 à TU 27.

- *Membre de Lapoujade et Formation de la Barre à Pecten*

 Tendance : le nombre de nodosariidés est constant de TU 32 à TU 40, puis augmente brutalement à partir de TU 49.

 Coupures : coupure très nette entre TU 40, très pauvres en nodosariidés, et TU 49, moyennement riches.

 Discontinuités : la coupure signalée ci-dessus concerne les prélèvements de part et d’autre de la surface d’inondation maximale (MFS 5).

 Cas particuliers : l’échantillon TU 31 contient un nombre de nodosariidés très important par rapport aux autres prélèvements.

Comparaison du nombre de nodosariidés et d’*Ammodiscus*

Opposition très marquée entre les nodosariidés et les *Ammodiscus*.
- Membre des Argilites grises

Tendance : les morphologies en voie de déroulement dominent largement les deux autres morphologies de nodosariidés. Les morphologies droites sont les moins représentées, leur nombre baisse régulièrement de TU 13 à TU 16. Chaque forme de nodosariidés suit la même évolution que celle décrite pour leur nombre total.

Coupures : les coupures sont situées, pour chaque forme, au mêmes niveaux que dans le graphique du nombre total de nodosariidés.

Groupements : *les morphologies droites* sont absentes de TU 17 à TU 27.

- Membre de Lapoujade

Tendance : de TU 31 à TU 40, les morphologies en voie de déroulement dominent très significativement les autres morphologies de nodosariidés (TU 31), ou sont pratiquement les seules présentes (TU 32 à TU 40). Les individus à morphologies enroulées sont les plus nombreuses dans les échantillons TU 49 et TU 50.

Coupures, Groupements, Discontinuités et Cas particuliers : les observations faites pour le nombre des différentes morphologies de nodosariidés sont les mêmes que celles déduites de l'examen du graphique du nombre total de nodosariidés. Signalons tout de même l'augmentation très significative du nombre de spécimens à morphologies enroulées au-dessus de la surface d'inondation maximale (MFS 5).

3)- Tableau de répartition des ostracodes (Tab. 16)

A/ **Nombre de taxons : 4 genres**
- genre *Ogmoconchella* : 1 espèce ;
- genre *Ogmoconcha* : 1 espèce ;
- genre *Isobythocypris* : 1 espèce ;
- genre *Gramaunella* : 1 espèce.

B/ **Comptage**

Nombre d'ostracodes (Fig. 38, p. 186)

- **Membre des Argilites grises**

Tendance : décroissance globale de TU 14 à TU 27, puis augmentation de TU 27 à TU 29.
Tableau 16 : Coupe de Turenne.
Tableau de répartition stratigraphique des taxons d'ostracodes.

Coupures : 2 coupures nettes de part et d'autre de TU 14 très riches en ostracodes (500 individus).
Une coupure moins spectaculaire entre TU 27 et TU 29.

- Membre de Lapoujade

Tendance : décroissance générale de TU 31 à TU 40.
Coupures, Groupements et Discontinuités : 2 ensembles peuvent être individualisés :
- de TU 31 à TU 40, les prélèvements sont pauvres (TU 32 à TU 40) ;
- au-dessus, les ostracodes sont absents (TU 49) ou très peu abondants (TU 50, 2 individus). La limite entre ces deux groupes correspond à la surface d'inondation maximale (MFS 5).
Cas particuliers : le prélèvement TU 31 contient beaucoup plus d'ostracodes que les autres échantillons de ce membre.

4)- Fréquence relative (Fig. 39, p. 187)

% Ammodiscus et nodosariidés

- Membre des Argillites grises

Tendance : légère croissance générale du pourcentage d'Ammodiscus de TU 16 à TU 27.

- 190-
Coupures : 2 coupures nettes :
- entre TU 14 (100 % de nodosariidés) et TU 16 (22 %) ;
- entre TU 27 (10 % de nodosariidés) et TU 29 (99 %).

Groupements : groupements de prélèvements de TU 16 à TU 27 qui comptent en moyenne 85 % d'Ammodiscus, alors que la base du membre (TU 13 et 14) en compte 0.5 %, et le sommet, 1 %.

- Membre de Lapoujade

Tendance : pas de tendance générale
Coupures : 2 coupures nettes :
- entre TU 31 (100 % de nodosariidés) et TU 32 (16 %) ;
- entre TU 40 (17 % de nodosariidés) et TU 49 (100 %).

Groupements : groupements de prélèvements de TU 32 à TU 40 qui contiennent 75 % d'Ammodiscus, tandis que la base (TU 31) et le sommet du membre (TU 49 et 50) n'en possèdent aucun.

Discontinuités : la coupure entre TU 40 et TU 50 concerne les prélèvements de part et d'autre de la surface d'inondation maximale (MFS 5).

% ostracodes et nodosariidés

- Membre des Argilites grises

Tendance : le pourcentage d'ostracodes est d'une manière générale beaucoup plus important que celui des nodosariidés, excepté pour TU 13.
Coupures : 2 coupures :
- la première, très nette, entre TU 13 (99.5 % de nodosariidés) et TU 14 (16 %) ;
- la seconde, dans de moindres proportions, entre TU 27 et TU 29.

Cas particuliers : seul le prélèvement TU 13 contient 99.5 % de nodosariidés, alors que les 6 suivants en renferment en moyenne 18 %.

- Membre de Lapoujade

Tendance : le pourcentage d'ostracodes est supérieur à celui des nodosariidés de TU 31 à TU 40. Il augmente, d'une façon générale, de TU 31 à TU 36, puis il diminue de TU 36 à TU 40.

Coupures : coupure très significative entre TU 40 et TU 49, le pourcentage d'ostracodes passe de 69 à 0.

% foraminifères et ostracodes

- Membre des Argilites grises

Tendance : le pourcentage d'ostracodes régresse de TU 14 à TU 27, puis augmente de TU 27 à TU 29. Il est en moyenne de 60 % de TU 14 à TU 29.

- 191 -
Coupures : coupure très significative entre les deux premiers prélèvements (TU 13 et TU 14), la proportion en foraminifères passe de 96 à 16 %.

Cas particuliers : TU 13 est le seul prélèvement qui compte des foraminifères en très grand nombre.

- Membre de Lapoujade

Tendance : augmentation globale du pourcentage d’ostracodes de TU 31 à TU 36, puis diminution de TU 36 à TU 50. La proportion en ostracodes est en moyenne légèrement supérieure à celle des foraminifères de TU 31 à TU 40 (54 % contre 46 %).

Coupures et Discontinuités : coupure nette au passage de la surface d’inondation maximale (MFS 5). Les foraminifères représente 100 % de la microfaune au-dessus de cette discontinuité.

5)- Nombre total de microorganismes (Fig. 38, p.186)

- Membre des Argilités grises

Tendance : le nombre de microfossiles augmente de TU 13 à TU 14, où il culmine à 592 individus, puis régresse de globalement jusqu’à TU 27 (45 individus). Il augmente à nouveau de TU 27 à TU 29.

Coupures et Discontinuités : les microorganismes étant très nombreux dans le prélèvement TU 14, deux coupures sont évidentes de part et d’autre de cet échantillon. Une troisième peut être signalée au passage de TU 27 à TU 29.

- Membre de Lapoujade

Tendance : excepté le gisement TU 31, le nombre de microfossiles est relativement constant de TU 32 à TU 50 (53 individus en moyenne).

Coupures : coupure très nette entre TU 31 (405 individus) et TU 32 (61 individus).

Discontinuités : aucun changement significatif au passage de la surface d’inondation maximale (MFS 5).

6)- Conclusion

- Membre des Argilités grises

Deux groupes de prélèvements, et un échantillon isolé, se dégagent à partir du nombre d’Ammodiscus, des nombres de nodosariidés et de leurs différentes morphologies :

- premier groupe, à la base, TU 13 et TU 14 ;
- deuxième groupe, en partie médiane, de TU 16 à TU 27 ;
- au sommet du membre, l’échantillon TU 29.
Le premier groupe et TU 29 présentent des caractéristiques très similaires, et opposées par rapport au deuxième groupe :
- absence d’*Ammodiscus* ;
- nodosariidés en grande quantité ;
- prédominance des nodosariidés en voie de déroulement.

La distribution verticale des ostracodes montre aussi la formation de trois ensembles. La limite entre le premier et le deuxième groupe est dans ce cas décalée vers le bas, entre TU 13 et TU 14.

- *Membre de Lapoujade*

Les peuplements sont clairement différenciés et opposés au-dessous (intervalle transgressif) et au-dessus (prisme de haut niveau marin) de la surface d’inondation maximale (MFS 5).

Caractéristiques micropaléontologiques des cortèges sédimentaires au niveau de la coupe de Turenne.

- les intervalles transgressifs (excepté TU 31, cf. ci-dessous) se caractérisent par :
 - une large prédominance des *Ammodiscus* sur les autres foraminifères ;
 - une faible quantité de nodosariidés, représentés en majorité par des morphologies en voie de déroulement ;
 - la diminution globale du nombre d’ostracodes de la base au sommet de ce cortège sédimentaire ;

- les prismes de haut niveau marin, par :
 - l’absence d’*Ammodiscus* ;
 - l’abondance de nodosariidés (avec des spécimens à morphologies enroulées prédominants) ;
 - la quasi inexistence des ostracodes.

L’échantillon TU 31, situé immédiatement au-dessus de la surface de transgression (TS 5), possède des particularités voisines de celles d’un échantillon prélevés en haut niveau marin, pour ce qui concerne le nombre d’*Ammodiscus* et de nodosariidés. Par contre, ceux sont les morphologies en voie de déroulement qui dominent chez les nodosariidés, et les ostracodes sont absents.

Comparaison des groupements micropaléontologiques

Le découpage en termes de stratigraphie séquentielle initialement proposée pour le Membre de Lapoujade, nous permet d’extrapoler l’interprétation fondée sur les données

Le nombre de foraminifères augmente de l'intervalle transgressif vers le prisme de haut niveau marin.

Grâce aux données de la microfaune, un nouveau découpage en cortèges sédimentaires peut donc être proposé pour le Membre des Argilites grises à Turenne :

- TU 13 et TU 14 : prisme de haut niveau marin de la séquence PL 3 ;
- entre TU 14 et TU 16 : la limite de séquence (SB 4) et la surface de transgression (TS 4) de la séquence PL 4 se confondent par l'absence du prisme de bas niveau marin ;
- de TU 16 à TU 27 : intervalle transgressif de la séquence PL 4 ;
- entre TU 27 et TU 29 : surface d'inondation maximale de la séquence PL 4 ;
- TU 29 : prisme de haut niveau marin de la séquence PL 4.

IV 2.1.6. Saint-Michel-de-Bannières

Le petit nombre de prélèvements effectuées sur cette coupe n'a pas rendu possibles les analyses statistiques. De plus, elle est la seule à concerner la limite Carixien-Domérien, et ne présente donc pas d'intérêt pour les corrélations stratigraphiques. Par contre, de bons résultats en biostratigraphie seront exposés dans le chapitre suivant (cf. IV 3). Le tableau de répartition des foraminifères benthiques et des ostracodes sera présenté dans le tableau général de répartition de la microfaune.

<table>
<thead>
<tr>
<th>ST MICHEL-DE-BANNIÈRES</th>
<th>Polycope densa</th>
<th>Cardiogaster K.</th>
<th>Pseudokalpadia bignosea</th>
<th>Ledaia septentrion</th>
<th>Ommocochrona sp. aff.</th>
<th>Ommocochrona propinqua</th>
<th>Ommocochrona sp.</th>
<th>Bardinia molestula</th>
<th>Lamaria lanceolata</th>
<th>Pontoglypha elegata</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMI 22</td>
<td></td>
</tr>
<tr>
<td>SMI 19</td>
<td></td>
</tr>
<tr>
<td>SMI 18</td>
<td></td>
</tr>
<tr>
<td>SMI 17</td>
<td></td>
</tr>
<tr>
<td>SMI 15</td>
<td></td>
</tr>
<tr>
<td>SMI 14</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 17 : Coupe de ST Michel de Bannières. Tableau de répartition stratigraphique d'ostracodes.

- 194-
Tableau 18: Coupe de Saint-Michel-de-Bannières.
Tableau de répartition stratigraphique des taxons de foraminifères benthiques.

- 195 -
Niveaux de prélèvements (Fig. 31, p. 152)

Les six échantillons ont tous été prélevés dans le Membre des Calcaires en rangs de pavés : les trois premiers, SMI 14, 15 et 17, sont datés du Carixien (Horizon à Figulinum), les trois suivants du Domérien (SMI 18, Horizon à Occidentale ; SMI 19 et 22, Horizon à Monestier).

IV 2.1.7. Conclusion Générale

La comparaison des graphiques du nombre d’*Ammodiscus* pour le Membre de Lapoujade, de Turenne à Loubressac-Lapoujade en passant par Magnagues, montre que les paléomilieux à *Ammodiscus* se déplacent du Nord ouest au Sud est vers le haut de la série (Turenne, intervalle transgressif ; Magnagues, passage intervalle transgressif-prisme de haut niveau marin ; Loubressac-Lapoujade, prisme de haut niveau marin). L’influence des eaux saumâtres étant de plus en plus tardive de Turenne à Loubressac-Lapoujade, les dépôts sédimentaires sont donc de plus en plus distaux dans la même direction avec un dispositif général en comblement.

Toutefois, le nombre important de nodosariidés dans les premiers prélèvements de l'intervalle transgressif (TST 5) semble dû à la brusque augmentation de l’influence marine du milieu, après la première surface d’inondation (TS 5). Nous pourrions en conclure qu’il se crée à ce moment un grand nombre de niches écologiques, variées, qui entraîne une prolifération de la microfaune benthique. Les fluctuations du niveau marin du troisième ordre s’enregistrent donc ponctuellement, dans des tendances générales à long terme.

Les *Ammodiscus* et les nodosariidés apparaissent comme d’excellents indicateurs sur les degrés de salinité ou d’oxygénéation des de leurs habitats.

Les populations d’ostracodes ont un comportement assez analogue pour un même cortège sédimentaire, quelles que soient les coupes. Les ostracodes sont surtout présents dans les intervalles transgressifs. Leur nombre décroît globalement de la base de ce cortège sédimentaire vers le prisme de haut niveau marin sus-jacent.
Suivant ce raisonnement, le deuxième niveau de prélèvement de Turenne (TU 14) devrait être placé à la base de l'intervalle transgressif. Deux interprétations sont donc possibles à ce niveau :

- la limite de séquence-surface de transgression (SB-TS 4) doit être décalée vers le bas, d'un échantillon ;

- les populations d'ostracodes sont sensibles aux changements environnementaux avant les foraminifères, hypothèse confirmée par l'étude comparative des peuplement d'ostracodes et de foraminifères du Sud du Quercy (coupe de La Boulbène).

IV 2.2. Analyses statistiques

Cette étude a pour but d'étayer ou de préciser les hypothèses de regroupements de gisements (cortèges sédimentaires), déduites des interprétations des données lithologiques, sédimentologiques, biostratigraphiques et micropaléontologiques. Toutes les méthodes statistiques (Analyse des Correspondances Multiple, A.C.M. ; Classification hiérarchique, Analyse Factorielles Discriminantes, A.F.D.) ont pour données, les tableaux de répartition des foraminifères benthiques ou des ostracodes par niveaux de prélèvements. Seules seront prises en considération les présences ou absences divers taxons (genres, espèces, morphogénres) indépendamment de leurs nombres ou abondances relatives. Ces études mathématiques, entreprises depuis quelques années à l'Université de Paul Sabatier (Bonnet et al., 1991, 1992a, 1992b; Brunel et al., 1994, 1995; Cubaynes et al., 1995), sont rendues possibles par l'abondance et la diversité spécifique de la microfaune liasique. Plus le nombre de prélèvements effectués est grand, et leur pas d'échantillonnage réduit, meilleures seront les possibilités d'interprétation et les résultats. Parfois, une diversité spécifique trop faible (ostracodes) ou la présence exclusive du même taxon dans un trop grand nombre de prélèvements successifs, rendent difficile ou impossible la différenciation des associations de populations. Pour ces raisons, les analyses statistiques fondées sur les foraminifères benthiques n'ont pas pu être réalisées :

- au Puy d'Issolud, car les quinze niveaux de prélèvements contiennent des *Ammodiscus*, et trois seulement, des nodosariidés ;

- à Saint-Michel-de-Bannières, à cause d'un trop petit nombre d'échantillons.

Les études statistiques concernant les ostracodes sont uniquement possibles à Gintrac, les populations dans les autres coupes étant trop peu diversifiées.
IV 2.2.1. Nombre de présence et taux de renouvellement

Le taux de renouvellement est calculé suivant la formule exposée par Jarvinen, en 1979 :

\[Tr = \frac{(Ap_{ij} + Disp_{ij})}{(N_i + N_j)} \]

- Ap_{ij} : nombre d'apparitions entre les niveaux successifs i et j ;
- Disp_{ij} : nombre de disparitions entre les niveaux successifs i et j ;
- N_i : nombre de taxons dans le niveau de prélèvement i ;
- N_j : nombre de taxons dans le niveau de prélèvement j.

1)- Loubressac-Lapoujade (Fig. 40, p. 199)

Membre des Argilites grises

La courbe présente deux oscillations :
- croissance de PJ 1 PJ 6, où elle atteint son maximum ;
- décroissance brutale de PJ 6 à PJ 7 ;
- nouvelle croissance de PJ 7 à PJ 10 ;
- décroissance de PJ 10 à PJ 12.

Le taux de renouvellement est globalement croissant pendant l'intervalle transgressif. La chute de la courbe au passage de la surface d'inondation maximale peut s'expliquer par le fait que nous passons, à ce niveau, d'une série marneuse homogène à une alternance marno-gréseuse. Ceci entraîne une baisse du nombre de taxons et de la variabilité spécifique. Les deux pulsations observées de PJ 1 à PJ 11 pourraient témoigner de l'existence de deux paraséquences dans l'intervalle transgressif.

Membre de Lapoujade

La courbe du taux de renouvellement montre une décroissance globale dans l'intervalle transgressif (TST 5), une remontée au niveau de la surface d'inondation maximale (maximum relatif en PJ 40), puis une nouvelle décroissance globale dans le prisme de haut niveau marin (HST 5). Le passage de la sédimentation marneuse du Membre de Lapoujade à la sédimentation à dominante calcaire de la Formation de la Barre à Pecten entraîne un renouvellement faunique brutal et important (PJ 46 à 56).

2)- Magnagnues (Fig. 41, p. 200)
- constance du taux de renouvellement de MG A à MG C ;
- minimum en MG D ;
- remontée brutale et maximum de MG E à MG G ;
- décroissance jusqu'à MG 1.

- 198-
Figure 42 :
Coupes de Loubressac-Lapoujade et de Turenne.
Taux de renouvellement et nombre de présence par niveaux de prélèvements.
Figure 41 :
Coupes de Gintrac et de Magnagues.
Taux de renouvellement et nombre de présence par niveaux de prélèvements.
3) Turenne (Fig. 40, p. 199)

Membre des Argilites grises
- croissance de la courbe à la limite entre le prisme de haut niveau marin (HST 3) et l'intervalle transgressif (TST 4);
- constance durant l'intervalle transgressif;
- augmentation du taux de renouvellement au niveau de la surface d'inondation maximale (MFS 4), où la courbe atteint son maximum (TU 29 : 100 %).

Membre de Lapoujade
- décroissance pendant l'intervalle transgressif (TST 5);
- remontée brutale après la surface d'inondation maximale (MFS 5). Il faut noter que le passage de TU 40 à TU 49 correspond aussi au changement régime de sédimentation du Membre de Lapoujade à la Formation de la Barre à Pecten.

4) Gintrac (Fig. 41, p. 200)

Membre des Argilites grises

- Foraminifères
 La courbe du taux de renouvellement est trop fluctuante pour que l'on puisse dégager des groupes ou des ruptures sûres. Nous pouvons juste signaler des chutes brutales pour les prélèvements GI 15, 19, 28 et 32. La courbe est grossièrement croissante du bas vers le haut de la coupe.

- Ostracodes
 Comme chez les foraminifères, la courbe est très fluctuante. Deux groupes se dégagent de part et d'autre de GI 24 :
 - de GI 10 à GI 24, les fluctuations sont très fortes (maximum en GI 16, 66.7 %);
 - de GI 25 à GI 47, les oscillations sont de moindre amplitude (maximum relatif en GI 35, 50 %).

5) Conclusion

D'une façon générale, nous observons :
- un renouvellement microfaunique important après les surfaces d'inondation maximale, et lors des changements de régime de sédimentation (excepté à Loubressac-Lapoujade, Membre des Argilites grises);
- une décroissance du taux de renouvellement des taxons pendant l'intervalle transgressif.
Les mêmes conclusions ont d’ailleurs été dégagées des études statistiques effectuées dans les séries marneuses domériennes du Quercy méridional (Cubaynes et al., 1995) et toarciennes du Quercy (Bonnet et al., 1991 et 1992 Rey et al 95).

IV 2.2.2. Analyse des Correspondances Multiple (A.C.M.) et Classification hiérarchique

Ces trois méthodes statistiques sont étudiées simultanément, car l’interprétation des projections sur les plans factoriels est très largement facilitée par la classification automatique, beaucoup plus objective que la classification visuelle. La classification hiérarchique a pour critère le moment d’ordre 2 (variance), et pour données, les coordonnées des gisements sur les six premiers axes factoriels.

1) Loubressac-Lapoujade

Deux A.C.M. ont été réalisées, car les séries marneuses du Membre des Argilites grises et du Membre de Lapoujade sont séparées par la barre de calcaires du Membre de Rieuzaux. Dans le premier cas, PJ 1 à PJ 12 sont considérés comme éléments actifs, et PJ 36 à PJ 65 comme éléments supplémentaires. L’espace factoriel est donc uniquement généré par les profils microfossiles des échantillons PJ 1 à PJ 12. Dans le second cas (Membre de Lapoujade), c’est l’inverse.

Membre des Argilites grises

Pourcentage d’inertie des trois premiers axes de l’A.C.M. :

\[F_1 = 32.8\% \quad F_2 = 20.2\% \quad F_3 = 15.1\% \]

Pourcentage d’inertie cumulé des trois premiers axes : 68.1 %

Il faut signaler que les pourcentages d’inertie des axes factoriels ont moins de signification en A.C.M. qu’en Analyse Factorielle des correspondances proprement dite.

Variations des valeurs de F_1 en fonction du niveau (Fig. 42, p.203) :
- décroissance globale de l’intervalle transgressif vers le prisme de haut niveau marin;
- valeur minimale après la surface d’inondation maximale.

Corrélation de la courbe des valeurs de F_1 avec les autres courbes :
- corrélation avec la courbe du nombre de taxons (surtout pour les 6 premiers gisements);
Figure 42 :
Variations des valeurs (scores) des gisements sur le 1er axe (F1) de l'A.C.M.
des tableaux de répartition stratigraphique des taxons de foraminitères ou d'ostracodes.
- corrélation parfaite de la courbe des résidus de la régression polynomiale avec celle du nombre de taxons

Figuration des gisements dans le plan factoriel F₁-F₂ (Fig. 43 et 44) :
- les prélèvements les plus centrés sur la droite (PJ 1, 3 et 5), correspondent aux échantillons riches en ostracodes et nodosariidés, et pauvres en *Ammodiscus*, tandis que ceux situés sur la gauche présentent des caractéristiques inverses.
- les deux mêmes groupes sont différenciés grâce à la classification hiérarchique. Dans le deuxième groupe, l'échantillon PJ 12 (HST 4) présente le profil microfaunique le plus particulier.

Membre de Lapoujade

Pourcentage d'inertie des trois premiers axes de l'A.C.M. :

\[F₁ = 40.2\% \quad F₂ = 16.5\% \quad F₃ = 11.9\% \]

Pourcentage d'inertie cumulé des trois premiers axes : 68.6 %

Variations des valeurs de F₁ en fonction du niveau (Fig. 42, p. 203) :
- décroissance pendant l'intervalle transgressif, puis croissance et stabilisation pendant le prisme de haut niveau marin;
- valeur minimale au niveau de la surface d'inondation maximale.

Comparaison de la courbe des valeurs de F₁ avec les autres courbes :
- corrélation négative avec la courbe du nombre de taxons.

Figuration des gisements dans le plan factoriel F₁-F₂ (Fig. 43 et 45) :
- un groupe de prélèvements (PJ 40, 41, 42, 43, 44, 45, 46, 50, 56 et 60) possèdent des coordonnées très voisines suivant les axes F₁ et F₂. Ce groupe correspond à tous les échantillons prélevés en prisme de haut niveau marin (HST 5), excepté PJ 63 et PJ 65. La plupart de ces gisements (Membre de Lapoujade) sont aussi ceux qui contiennent le plus d' *Ammodiscus* et très peu de nodosariidés. Les ostracodes y sont pratiquement inexistants.
- Les échantillons situés à la gauche des précédents (PJ 36, 37, 39, 63 et 65) possèdent une microfaune riche en nodosariidés, pauvre en *Ammodiscus* et très diversifiée. Les ostracodes sont plus nombreux que dans le groupe de droite.
- selon l'axe F₂, la diversité spécifique, la densité en nodosariidés ou les variations du nombre de chaque forme de nodosariidés, sont les seuls facteurs pouvant expliquer l'opposition entre PJ 37 et PJ 39.
- la classification hiérarchique isolé significativement (Fig. 43B) :
 . l'échantillon PJ 36;
Figure 43 : Coupe de Loubressac-Lapoujade.
A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 7).
Classification hiérarchique.
Figure 44 : Coupe de Loubressac-Lapoujade. Membre des Argilites grises.

Figuration des gisements dans le plan factoriel F₁-F₂.
Figure 45 : Coupe de Loubressac-Lapoujade. Membre de Lapoujade. Figuration des gisements dans le plan factoriel F_1-F_2.
les prélèvements du prisme de haut niveau marin marneux (HST 5), PJ 40 à 46;
- ceux du prisme de haut niveau marin de la Barre à Pecten, PJ 50 à 65;
- l’échantillon PJ 37;
- l’échantillon PJ 39.

Tous les gisements prélevés en prisme de haut niveau marin forment un groupe très lié faunistiquement. Les échantillons de l'intervalle transgressif, PJ 36, 37 et 39, s'opposent à la fois à ce groupe, et entre eux.

Conclusion

- Les valeurs de F_1 suivant le niveau de prélèvement montrent une corrélation positive ou négative avec le nombre de taxon.
- La courbe des valeurs de F_1 décroît pendant l'intervalle transgressif.
- La classification hiérarchique distingue nettement les prélèvements de prisme de haut niveau marin et d'intervalle transgressif (TST 5 / HST 5), ainsi que le changement de régime de sédimentation (Membre de Lapoujade / Formation de la Barre à Pecten).
- Dans le plan factoriel F_1-F_2, l'axe F_1 pourrait représenter un gradient de salinité ou un degré d’oxygénation des eaux, les eaux les plus marines ou les plus oxygénées se situant du côté des prélèvements riches en nodosariidés et pauvres en *Ammodiscus*. Si l'on fait référence aux conclusions du chapitre IV 2.1.7., l'axe F_1 traduirait plutôt un degré d'influence des eaux saumâtres sur la microfaune benthique.

Il est au contraire très difficile de donner une signification à l'axe F_2. Le seul facteur influant sur la position des gisements réside dans le nombre et la diversité spécifique des nodosariidés.

2) Magnagues

Pourcentage d'inertie des trois premiers axes de l'A.C.M. :

$F_1 = 38.8\% \quad F_2 = 21.9\% \quad F_3 = 13.3\%$

Pourcentage d'inertie cumulé des trois premiers axes : 74 %

Variations des valeurs de F_1 en fonction du niveau (Fig. 42, p. 203) :
- croissance de MG A à MG B, puis décroissance jusqu'à MG I.

Figuration des gisements dans le plan factoriel F_1-F_2 (Fig. 46, p. 209) :
- l'axe F_1, l'axe F_2 et la classification hiérarchique sépare un groupe formé des prélèvements, MG A, C, D, E, F et G, de l'échantillon MG B, et de l'échantillon MG I.

- 208-
Figure 46 : Coupe de Magnagues.
A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 9). Figuration des gisements dans les plans factoriels F_1-F_2 (A) et F_1-F_3 (B). Classification hiérarchique (C).
L’opposition de ces deux derniers échantillons selon l’axe F₁ pourrait être expliquer par un nombre d’espèces de nodosariidés de forme enroulée plus important chez MG I, que chez MG B.

Figuration des gisements dans le plan factoriel F₁-F₃ (Fig. 46, p. 209):
- l’axe F₁ différencie les gisements riches en Ammodiscus (MG E, F, G et I) et ceux qui en contiennent très peu ou aucun.

Conclusion
- en raison d’un trop petit nombre d’échantillon, les résultats ne sont pas très probants sur cette coupe. Dans le plan factoriel F₁-F₃, l’axe F₁ pourrait représenter, comme à Loubressac-Lapoujade, un degré d’oxygénation ou de salinité des eaux.

3)- Gintrac

Foraminifères benthiques

Une première A.C.M., réalisée à partir du tableau de répartition des foraminifères (26 gisements, 34 espèces), n’a pu être exploitée en raison d’une contribution trop importante des gisements GI 20 et GI 27 sur le premier axe factoriel. Chacun de ces échantillons possèdent trois espèces qui ne sont présentes qu’à leur niveau. Nous avons dû éliminer ces six espèces, ainsi que les Ammodiscus, présents dans tous les prélèvements. L’échantillon GI 38, ne contenant que des Ammodiscus, a lui aussi été écarté. Le nouveau tableau de répartition ne comporte donc plus que 25 niveaux de prélèvements et 27 espèces.

Pourcentage d’inertie des trois premiers axes de l’A.C.M. :
F₁ = 16.4 % F₂ = 13.6 % F₃ = 11.8 %

Pourcentage d’inertie cumulé des trois premiers axes : 41.8 %

Variations des valeurs de F₁ en fonction du niveau (Fig.42, p. 203) :
- décroissance de la courbe de GI 11 à GI 16;
- maximum relatif en GI 18;
- nouvelle décroissance de GI 18 à GI 24 (valeur minimale de la courbe);
- croissance de GI24 à GI 30 (maximum relatif);
- chute brutale de GI 30 à GI 31, puis remontée jusqu’à GI 35 et enfin décroissance de GI 35 à GI 47.

D’une manière générale la courbe des valeurs de F₁ est décroissante de GI 10 à GI 24, puis croissante de GI 24 à GI 47.
Comparaison de la courbe des valeurs de F_1 avec les autres courbes :

- la courbe des valeurs de F_1 est corrélée positivement de GI 10 à GI 15, puis négativement de GI 16 à GI 47, avec la courbe du nombre de taxons. Cette inversion de tendance traduit certainement un changement brusque dans les associations de nodosariidés entre GI 15 et GI 16. Les gisements de la base de la coupe s’opposeraient donc aux autres prélèvements selon l’axe F_1.

Figuration des gisements dans le plan factoriel F_1-F_2 (Fig. 47, p. 212) :

- trois gisements (GI 16, 24 et 31) sont très enclins par rapport aux autres prélèvements, qui forment un ensemble assez compact autour de l’origine des axes factoriels. Cet ensemble peut être divisé en trois groupes (Cf. Classification hiérarchique, Fig. 47) :

 - GI 10, 11, 12, 13, 14 et GI 18, forment un premier groupe bien individualisé auquel se rattache GI 16 d’après la Classification hiérarchique;
 - le deuxième groupe peut être subdivisé en deux sous-groupes, GI 15, 23, 30, 35, 19, 21 et GI 29, 42, 32.
 - le dernier groupe est composé des échantillons, GI 20, 27, 22, 26, 25, 28 et 47. Le prélèvement GI 24 a des caractéristiques proches de ce troisième groupe (Cf. Classification hiérarchique);
 - GI 31 n’est associé à aucun de ces trois groupes.

Figuration des gisements dans les autres plans factoriels (F_1-F_3 et F_2-F_4) (Fig. 47 et 48) :

- les trois prélèvements, GI 16, 24 et 31, sont toujours éloignés des autres gisements.
- le premier groupe composé des échantillons de la base de la coupe s’individualise bien, alors que les deux suivants sont beaucoup plus imbriqués l’un dans l’autre.

Conclusion

- La courbe des valeurs de F_1 montre une inversion de tendance brusque entre GI 15 et GI 16.
- La classification hiérarchique divise la série de gisements en trois groupes.
- Quelques soient les axes considérés, les différents plans factoriels opposent le premier groupe aux deux autres groupes, lesquels ont des caractéristiques microfauniques voisines. Seul le prélèvement GI 15 est associé au deuxième groupe, mais il reste très voisin du premier.

L’indécision concernant la signification en termes de cortèges sédimentaires (HST 3 ou LST 4, Cf. IV 2.1.7.) du groupe, GI 10 à GI 15, pourrait donc être levé.
Figure 47 : Coupe de Gintrac.
A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 13).
Figuration des gisements dans les plan factoriel F_1-F_2 (A) et F_1-F_3 (B).
Figure 48 : Coupe de Gintrac. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 13). Classification hiérarchique. Figuration des gisements dans le plan factoriel F_2-F_3.

- 213-
Par analogie avec les études statistiques réalisées au sein des séries marneuses du Domérien et du Toarcien (Brunel, 1992), nous pouvons considéré ce groupe comme le prisme de bas niveau marin de la séquence PL 4. Une dernière incertitude concerne la limite supérieure de ce groupe que l'on peut placer entre GI 15 et GI 16, ou entre GI 18 et GI 19.

- Le deuxième et le troisième groupe sont étroitement liés dans les différents plans factoriels. De plus, on observe une alternance de prélèvements associés à l'un ou l'autre de ces deux groupes, dans l'ordre stratigraphique. Sachant que l'A.C.M. différence mal les intervalles transgressifs des prisme de haut niveau marin, notre hypothèse de découpage en cortèges sédimentaires de la partie moyenne et supérieure de cette coupe (GI 16 à 29, TST 4; GI 30 à 47, HST 4), semble donc valable. La limite entre ces deux cortèges sédimentaires reste imprécise, les comptages des différents microorganismes la plaçant entre GI 29 et GI 30 et l'A.C.M., entre GI 28 et GI 29.

Ostracodes

Pourcentage d'inertie des trois premiers axes de l'A.C.M. :
\[F_1 = 28.1\% \quad F_2 = 21.9\% \quad F_3 = 14.8\% \]

Pourcentage d'inertie cumulé des trois premiers axes : 64.8 %

Variations des valeurs de \(F_1 \) en fonction du niveau (Fig. 42, p. 203) :
- profil faunistique très particulier de GI 24, certainement dû aux deux espèces d’ostracodes qui ne sont présentes qu’à ce niveau;
- décroissance générale de la courbe de GI 10 à GI 24, puis croissance de GI 25 à GI 47;
- 3 ruptures minimes entre, GI 14 et GI 16, GI 22 et GI 23, et GI 26 et GI 27.

Comparaison de la courbe des valeurs de \(F_2 \) avec les autres courbes :
- corrélation négative trés claire avec la courbe du nombre de taxons.
- corrélation négative moins franche avec la courbe du taux de renouvellement.

Figuration des gisements dans le plan factoriel \(F_2-F_3 \) (Fig. 49, p. 215) :
- la classification hiérarchique et la projection des gisements nous montre la formation de 2 ensembles :
Figure 49 : Coupe de Gintrac. A.C.M. du tableau de répartition des ostracodes (Tab. 14). Classification hiérarchique (B).

Figuration des gisements dans le plan factoriel F_1-F_2 (A).
. GI 10, 11, 13, 14, 23, 26, 28, 38, 47 et 35. Cet ensemble représente plutôt la base (GI 10, 11, 13 et 14) et le sommet de la coupe (GI 35, 38 et 47);

. GI 12, 16, 18, 31, 27, 29, 19, 25, 32, 42, 20, 21 et 22. Ces échantillons, qui font partie de la partie moyenne de la coupe peuvent être regroupés en deux sous-ensembles (Cf. classification hiérarchique, Fig. 67);

- le prélèvement GI 24 est très excentré sur l’axe F₁;

- il est difficile de distinguer des groupes de gisements successifs dans l’ordre stratigraphique. Une extrapolation nous permet de scinder cette série en trois groupes : GI 10 à GI 14, puis GI 16 à GI 32, et enfin GI 35 à GI 47.

Conclusion

- La courbe des valeurs de F₁ est corrélée négativement avec la courbe du nombre de taxons.
- L’A.C.M. (axe F₁) et la classification hiérarchique individualise trois groupes.
- L’A.C.M. ne prenant en compte le gisement GI 15 (ostracodes absents), le premier groupe peut être considéré comme le prisme de bas niveau marin de la séquence PL 4.
- La limite entre le deuxième et le troisième groupe (entre GI 32 et GI 35) signale le passage d’une sédimentation marneuse homogène (partie inférieure et moyenne de la coupe), à l’alternance marno-gréseuse du sommet de la coupe.

4)- Tureenne

Pourcentage d’inertie des trois premiers axes de l’A.C.M. :

\[F₁ = 20.6\% \quad F₂ = 19.2\% \quad F₃ = 12.7\% \]

Pourcentage d’inertie cumulé des trois premiers axes : 52.5 %

Variations des valeurs de F₁ en fonction du niveau (Fig. 42, p. 203) :
- décroissance pendant le prisme de haut niveau marin (HST 3) et l’intervalle transgressif (TST 4).
- remontée brutale de TU 27 à TU 29. La valeur de F₁ atteint son maximum.
- décroissance pendant l’intervalle transgressif (TST 5), puis stabilisation de la courbe jusqu’au prélèvement TU 50.
Figure 50 : Coupe de Turenne. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 15). Classification hiérarchique (B).

Figuration des gisements dans le plan factoriel F_1-F_2 (A).
Comparaison de la courbe des valeurs de F_1 avec les autres courbes :
- corrélation positive avec la courbe du nombre de taxons. Le pic de la valeur de F_1 pour l'échantillon TU 29 est décalé vers la droite (TU 31) pour la courbe du nombre de taxons.

Figuration des gisements dans le plan factorial F_1-F_2 (Fig. 50, p. 217) :
- l'axe F_2 expose d'une part, les échantillons prélevés en prisme de haut niveau marin (HST 3, TU 13 et TU 14; HST 5, TU 49 et TU 50) et le premier gisement du TST 5 (TU 31), qui possède des caractéristiques de prisme de haut niveau marin (Cf. IV 2.1.3, 6 Conclusion), et d'autre part, les prélevements effectués dans les intervalles transgressifs (TST 4 et 5). Cette séparation correspond aussi à l'opposition entre les niveaux riches en *Ammodiscus* et pauvres en nodosariidés (TST 4 et TST 5, excepté TU 31) et les niveaux riches en nodosariidés et pauvres en *Ammodiscus*. La classification hiérarchique montre exactement la même bipartition (Fig. 50).

Selon F_2, TU 29 a une valeur proche de celle d'un prélèvement réalisé en intervalle transgressif.

Conclusion
- corrélation de la courbe de F_1 avec la courbe du nombre de taxons.
- décroissance des valeurs de F_1 pendant l'intervalle transgressif.
- un axe de l'A.C.M. (F_2) pourrait montrer une nouvelle fois un gradient d'influence des eaux saumâtres ou un degré d'oxygénation des eaux.
- l'échantillon TU 29 possède un profil microfaunique très particulier par la présence de quatre espèces que l'on ne connait pas ailleurs dans la coupe.

5)- Conclusions
- La courbe des valeurs de F_1 est corrélée dans tous les cas avec la courbe du nombre de taxons
- Un des axes factoriels, F_1 à Loubressac-Lapoujade et Magnagues et F_2 à Turenne, pourrait signaler un degré d'influence des eaux saumâtres et/ou mal oxygénées sur la biocénose des foraminifères.
- Le profil faunique du premier groupe de la coupe de Gintrae (GI 10 à GI 15), bien individualisé dans les trois premiers plans factoriels, est considéré comme un prisme de bas niveau marin (LST 4).
IV 2.2.3. Analyses Factorielles Discriminantes (A.F.D.)

Les Analyses Factorielles Discriminantes sont destinées à comparer la classification a priori des gisements basée sur des critères lithologiques ou micropaléontologiques (Comptages), à celle fournie par la biocénose des foraminifères. Cette méthode permet en outre de tester les limites de groupes incertains. Les résultats seront proposer sous la forme de tableaux dans lesquels les meilleurs tests apparaîtront en grisé.

1) Loubressac-Lapoujade

Membre des Argiles grises

La surface d'inondation maximale sépare les prélèvements PJ 1 à PJ 11 et l'échantillon PJ 12. Le deuxième groupe, formé d'un seul gisement ne permet pas la réalisation d'une A.F.D..

Membre de Lapoujade

La limite entre deux groupes est à tester, d'une part PJ 36 à PJ 39 et d'autre part PJ 40 à PJ 65. La fonction discriminante FD1 sépare très significativement ces deux groupes : 100 % des prélèvements sont bien classés.

2)- Magnaguès

Le Membre de Lapoujade est divisé en deux ensembles : MG A à MG F (intervalle transgressif) et MG G et MG I (prisme de haut niveau marin). Nous obtenons comme à Loubressac-Lapoujade 100 % de bons classements des prélèvements.

3)- Turene

Dans cette A.F.D., le prélèvement TU 29, seul échantillon de son cortège sédimentaire (HST 4), ne peut pas représenté un groupe. Il est considéré comme élément supplémentaire.

<table>
<thead>
<tr>
<th>TESTS</th>
<th>G 1</th>
<th>G 2</th>
<th>G 3</th>
<th>G 4</th>
<th>% bons classements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 groupes</td>
<td>TU 13 et TU 14</td>
<td>TU 16 à TU 29</td>
<td>TU 31 à TU 40</td>
<td>TU 49 et TU 50</td>
<td>86.67</td>
</tr>
<tr>
<td>G 1 : HST 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 2 : TST 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 3 : TST 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 4 : HST 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 gisements mal classés:
- TU 29 attribué à HST 5
- TU 32 attribué à TST 4
- TU 34 attribué à TST 4

<table>
<thead>
<tr>
<th>B 3 groupes</th>
<th>TU 18 à TU 24</th>
<th>TU 16 à TU 49</th>
<th>TU 49 et TU 50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1 : HST 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 2 : TST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 3 : HST 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 219 -
4) Gintrac
Foraminifères benthiques

<table>
<thead>
<tr>
<th>TESTS</th>
<th>GROUPES</th>
<th>% bons classements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G 1</td>
<td>G 2</td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 18</td>
<td>Gl 19 à Gl 24</td>
</tr>
<tr>
<td>A 4 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>7 gisements mal classés : - GI 13, 15, 23, 25 attribué à HST 4b</td>
<td>- GI 21, 42 attribué à HST 4a</td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 18</td>
<td>Gl 19 à Gl 27</td>
</tr>
<tr>
<td>B 4 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>7 gisements mal classés : - GI 13, 15, 23, 25 attribué à HST 4b</td>
<td>- GI 21, 42 attribué à HST 4a</td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 15</td>
<td>Gl 16 à Gl 27</td>
</tr>
<tr>
<td>C 4 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>7 gisements mal classés : identiques au groupe B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 15</td>
<td>Gl 16 à Gl 24</td>
</tr>
<tr>
<td>D 4 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>7 gisements mal classés : identiques au groupe A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 18</td>
<td>Gl 19 à Gl 24</td>
</tr>
<tr>
<td>E 4 groupes</td>
<td>G 1 : LST 3</td>
<td>G 2 : TST 3</td>
</tr>
<tr>
<td></td>
<td>6 gisements mal classés : - GI 20, 23, 47 attribué à HST 3</td>
<td>- GI 21, 29 attribué à TST 4</td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 15</td>
<td>Gl 16 à Gl 29</td>
</tr>
<tr>
<td>F 3 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>4 gisements mal classés : - GI 15, 21, 29 attribué à HST 4</td>
<td>- GI 47 attribué à TST 4</td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 18</td>
<td>Gl 19 à Gl 29</td>
</tr>
<tr>
<td>G 3 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>4 gisements mal classés : identiques au groupe F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 18</td>
<td>Gl 19 à Gl 29</td>
</tr>
<tr>
<td>H 3 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>3 gisements mal classés : - GI 15 attribué à HST 4</td>
<td>- GI 26 attribué à TST 4</td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 15</td>
<td>Gl 16 à Gl 28</td>
</tr>
<tr>
<td>I 3 groupes</td>
<td>G 1 : LST 4</td>
<td>G 2 : TST 4</td>
</tr>
<tr>
<td></td>
<td>4 gisements mal classés : identiques au groupe H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gl 10 à Gl 15</td>
<td>Gl 16 à Gl 28</td>
</tr>
</tbody>
</table>
L'interprétation des résultats de l'analyse lithologique et micropaléontologique (A.C.M. et A.F.D.) de la coupe de Gintrac sont synthétisés et reportés dans le tableau de la page suivante. Une incertitude demeure encore pour l'emplacement de la surface de transgression qui sépare le prisme de bas niveau marin (LST 4) de l'intervalle transgressif (TST 4). Les résultats de l'A.F.D. étant très voisins, le critère lithologique nous conduit à placer cette discontinuité sédimentaire entre GI 15 et GI 16. La surface de transgression, TS 4, serait donc matérialisée par le niveau de nodules calcaires, GI 16.
<table>
<thead>
<tr>
<th>LITHOLOGIE</th>
<th>niveau de nodules calcaires décimétriques</th>
<th>argilité</th>
</tr>
</thead>
</table>
| **COMPTAGE** | - coupure très nette pour le nombre d'ostracodes.
 | - les conclusions de l'étude des comptages placent, à ce niveau, la limite entre les deux premiers groupes. | - coupure minime pour le nombre d'ostracodes. |
| **COURBE DES VALEURS DE F_1 foraminifères** | - inversion de tendance :
 | corrélé positive avec la courbe du nombre de taxons de GI 10 à GI 15, puis négative de GI 16 à GI 47 | pas d'inversion de tendance | |
| **A.C.M. foraminifères et CLASSIFICATION HIERARCHIQUE** | pas de coupure | - appartenance de GI 18 à un groupe bien individualisé pour les trois premiers plans factoriels, et dans la classification hiérarchique (GI 10, 11, 12, 13, 14, et 18). |
| **A.C.M. ostracodes et CLASSIFICATION HIERARCHIQUE** | - GI 16 et GI 18 sont partie d'un même groupe, donc la limite est placée entre GI 14 et GI 16 | pas de coupure |
| **A.F.D. foraminifères** | - 88 % de bons classements | - 88 % de bons classements |
| **A.F.D. ostracodes** | - 87,5 % de bons classements | - 83,33 % de bons classements |

CONCLUSION

- Les associations d'ostracodes et nodosariidés sont sensibles instantanément aux variations du niveau marin.
- Les variations de type marin de la deuxième surface d'immersion sont en accord avec les premiers termes de l'expansion des associations de foraminifères.
- Les associations de nodosariidés sont sensibles instantanément aux variations du niveau marin.
- Les variations de type marin de la deuxième surface d'immersion sont en accord avec les premiers termes de l'expansion des associations de foraminifères.
IV. 2. 3 Contenu micropaléontologique des cortèges sédimentaires

Ce chapitre s'appuie sur deux tableaux où sont concentrées toutes les données micropaléontologiques.

Le tableau de répartition stratigraphique des taxons de foraminifères benthiques par cortèges sédimentaires pour les coupes lithologiques de Saint-Michel-de-Bannières, de Turenne, de Gintrace, de Loubressac-Lapoujade, du Puy d’Issolud et de Magnagues, nous indique que 74 taxons ont été déterminés (Fig. 51).

Ils sont représentés par :
- 30 espèces du genre *Lenticulina*, dont 7 espèces de morphogène *Lenticulina*. 6 espèces de morphogène *Aстатolus*, 7 espèces de morphogène *Marginulinositis*, 8 espèces de morphogène *Planuliaria* et 1 espèce des morphogènes *Saracenaria* et *Falsopalmula*;
 - 11 espèces du genre *Dentalina*;
 - 8 espèces du genre *Ichtyolaria*;
 - 8 espèces du genre *Nodosaria*;
 - 4 espèces du genre *Marginulina*;
 - 3 espèces du genre *Pseudonodosaria*;
 - 2 espèces du genre *Vaginulina*;
 - 1 espèce du genre *Lingulina*;
 - 1 espèce du genre *Bolivina*;
 - 1 espèce du genre *Trochamina*;
 - 1 espèce du genre *Berthelina*;
 - et les genres *Ammodiscus, Haplophragmium, Spirillina et Ceratobuliminidae*.

Les associations de foraminifères benthiques du domérien sont donc très nettement dominées d’un point de vue spécifique par les nodosariidés.

Les espèces les plus répandues stratigraphiquement et spatialement sont :
- *Lenticulina matutina* mg. *Aстатolus*;
- *Lenticulina inaequisstriata* mg. *Planuliaria*;
- *Ichtyolaria sulcata*;
- *Dentalinaterqueimi-obscura*;
- *Ammodiscus*.

D’un point de vue quantitatif ce sont les intervalles transgressifs (TST 4 et TST 5) qui contiennent le plus d’espèces différentes quelles que soient la coupe considérée. Les échantillons prélevés dans les environnements marneux (HST 3, LST 4, TST 4, TST 5 et HST 5 marneux du Membre de Lapoujade) renferment plus d’espèces que ceux provenant
Figure 51 : Tableau de répartition des taxons de foraminifères benthiques par cortèges sédimentaires. Coupes de Saint-Michel-de-Bannières (S), Turenne (T), Gintrac (G), Loubressac-Lapoujade (L), Puvelissou (P) et Maonaques (M).
Figure 52 : Répartition quantitative des taxons de foraminifères benthiques et des morphologies des taxons du genre Lenticulina par cortèges sédimentaires.
CHAPITRE V

SEQUENCES DE DEPOTS
DU DOMERIEN
DU QUERCY
SEPTENTRIONAL
V. SEQUENCES DE DEPOTS DU DOMERIEN DU QUERCY SEPTENTRIONAL

V. 1. SEQUENCES DE DEPOT, CORTEGES SEDIMENTAIRES ET DISCONTINUITES
 V.1.1 La séquence Pl 4
 V.1.2 La séquence Pl 5
 V.1.3 La séquence Pl 6

V. 2 CARACTERES GENERAUX DES CORTEGES ET SURFACES

V. 3 CALAGE BIOSTRATIGRAPHIQUE DES SEQUENCES ET CORTEGES SEDIMENTAIRES

V. 4 ORGANISATION GEOMETRIQUE DES DEPOTS ET PALEOTOPOGRAPHIE

V. 5 COMPARAISON QUERCY MERIDIONAL
V. SEQUENCES DE DEPOTS DU DOMERIEN DU QUERCY SEPTENTRIONAL

V. 1. SEQUENCES DE DEPOT, CORTEGES SEDIMENTAIRES ET DISCONTINUITES (FIG. 53)

L'analyse des microfaciès structures, figures sédimentaires, minéralogie des argiles, géochimie et de l'ensemble des données micropaléontologiques (qualitatives et quantitatives) nous permettent d'identifier dans la série, trois séquences de dépôts numérotées Pl 4, Pl 5 et Pl 6, par référence à la succession des séquences de dépôts décrites dans le Quercy méridional.

V.1.1 La séquence Pl 4 :

Cette séquence est essentiellement marneuse et représentée dans le Membre des Argilites grises et l'extrême base du Membre de Rieuval (Niveau 1, 2a et 2b).

A/ Le prisme de bas niveau marin (LST 4) n'a été observé qu'à Gintrac en raison du développement du couvert végétal dans les autres affleurements. Son identification dans un ensemble exclusivement marneux repose sur des données micropaléontologiques. Il se caractérise par la rareté ou l'absence des ostracodes, des foraminifères et la prédominance des Ammodiscus. Les analyses statistiques (A.F.D.) ont témoigné d'une individualisation très nette de cet ensemble par rapport aux deux ensembles sus-jacents.

B/ En tenant compte des informations microfauniques, on peut supposer que la surface de transgression se matérialise par le niveau de nodules calcaires GI 16.

C/ L'intervalle transgressif (TST 4)

Il a été identifié à Loubressac-Lapoujade, Gintrac et Alvignac. A Loubressac-Lapoujade, cet ensemble exclusivement marneux est caractérisé par la présence de diverses surfaces ferruginisées. Des lits plus gréseux s'intercalent à Magnagues et au Puy d'Issolud. Il est différencié par ses particularités micropaléontologiques :
- espèces profondes d'ostracodes.
- palynofaciès de milieux franchement marins.
Figure 54 :
Découpage en cortèges sédimentaires et séquences de dépôts.
Corrélations des cortèges et des discontinuités sédimentaires.
- paraséquences ostracodes/nodosariidés et Ammodiscus.

A Turette, ils se composent de bancs de marnes très riches en Ammodiscus et pauvres en Nodosariidés reposant sur des calcaires argileux à Nodosariidés rapportées au prisme de haut niveau marin de la séquence PL 3 sous jacente. À Saint-Laurent-les-Tours, il est représenté par des marnes micacées surmontées d’un banc calcaire. Ce cortège est daté de la zone à Margaritatus (Amaltheus margaritatus, trouvée en base de coupe (PJ 5)) et probablement de la zone à Margaritatus, sous-zone à Gibbosus dans sa partie supérieure (Saint-Laurent-les-Tours).

La minéralogie rend compte de valeurs fortes pour le quartz et la kaolinie, de l’alternance de vermiculite et de chlorite due à des fluides interstriciels, et d’une augmentation de la teneur en interstratifiés.

D/ La définition de la surface parmi les diverses surfaces candidates (croutes ou liserés ferrugineux, niveaux de nodules oxydés) est fondée sur les données micropaléontologiques (A.C.M. et A.F.D.). Elle s’accompagne d’une induration des marnes, et d’une disparition de la microfaune. Elle coïncide avec un changement de tendance dans la minéralogie des argiles. De ce fait, elle se situe souvent au sein de marnes (Loubressac-Lapoujade et Gintrac), dans un intervalle d’alternance de marnes et de grès à Magnagues, Puy d’Issolud et Turene.

E/ Prisme de haut niveau marin (HST 4):

À Loubressac-Lapoujade il est formé de marnes intercalées de bancs de grès finement laminés (niveau 2a) puis de calcaires argileux (niveau 2b) et couronné de bancs franchement calcaires (extrême base du Membre de Rieuval).

De la base au sommet, on observe une augmentation de la taille des bioclastes puis l’apparition des oolithes indiquant un accroissement de l’hydrodynamisme;

La minéralogie des analyses signale une baisse de la kaolinie, de la vermiculite et une augmentation des interstratifiés et de la chlorite. Le palynofaciès signale une décroissance du nombre d’éléments marins (dynokistes, Acritarches et algues marines). La géochimie montre une diminution des teneurs en manganèse et strontium. Ces divers éléments pourraient être considérés comme signalant une diminution de la profondeur des dépôts et un comblement de l’espace disponible par progradation.

Du point de vue micropaléontologique, on observe à Gintrac une diminution de la microfaune : là encore, les A.F.D. séparent très nettement les peuplements de part et d’autre de la surface d’inondation maximale (MFS 4). Le même cortège sédimentaire serait plus dilaté à Alvignac et à Miers avec une décharge de quartz au sommet (AL 40 à 44). Son épaisseur décroît de Loubressac-Lapoujade à Magnagues puis à Turene où il se réduit à 20 cm de marnes et 30 cm de calcaires (formant le Membre de Rieuval).
Il est caractérisé par un profil microfaunique très particulier (TU 29).

V.1.2 La séquence PI 5

Elle s'exprime dans le Membre de Rieuza (région de Loubressac-Lapoujade), dans le Membre de Lapoujade et dans la partie inférieure de la Formation de la Barre à Pecten.

A/ A la base, la limite de séquence apparaît de la façon la plus nette dans la région de Loubressac-Lapoujade et de Castelnau, avec une surface érosive accompagnée d'un brusque changement du microfaciès des structures et des figures sédimentaires ainsi que d'une disparition de la fraction argileuse.

Dans un ensemble de bancs à stratification horizontale dans la région de Magnagues et du Puy d’Issolud, elle est signalée par une brusque augmentation du niveau d’énergie (passage de biomicrite à biosparite) et par une surface légèrement ravinante.

B/ Prisme de bas niveau marin (LST 5)

Le prisme de bas niveau marin se présente sous des faciès très diversifiés toujours déposés sous une épaisseur d'eau moindre que l'unité précédente ; à Loubressac-Lapoujade, nous avons reconnu 6 mètres de calcaires massifs sans intercalations argileuses à grandes stratifications obliques. Ces dépôts de barres tidales sont intercalés de dépôts de tempête. Le microfaciès est une oobiomicrite ou oobiomicrosparite.

De la base au sommet, nous observons donc une augmentation de l’énergie et une réduction de l’espace disponible. A noter l’absence d’argile, de quartz et la teneur élevée en goethite.

La géochimie montre une teneur plus élevée en manganèse que dans les bancs sous-jacents et une teneur plus faible en strontium.

La microfaune est absente.

- Variations latérales :

Vers le Sud sur la couche d’Alvignac, ce cortège est moins épais et présente des stratifications en auge, avec une énergie moindre (moins oolithique et moins sparitique) mais toujours croissante vers le haut.

A Puymule et la Rouquette ce cortège est épais avec des rides et flaser-bedding.

A Magnagues et au Puy d’Issolud ce cortège devient bien moins épais et s'exprime par 2 ou 3 bancs intercalés de marnes à rares oolithes cristallisées en chamosite. Ceci indique des environnements d'énergie plus faible et plus protégée, à la périphérie du haut-fond oolithique.

On observe une lacune de ce cortège de bas niveau vers le Nord-Ouest à Turenne et Saillac, qui occupait donc une position plus proximale dans le bassin.
C/ La première surface d'inondation, TS 5, se place selon les coupes, dans des positions variées de la succession lithologique. A Loubressac-Lapoujade, Alvignac et Castelnau, elle se situe dans la partie sommitale du Membre de Rieuzaal. En effet, le dernier banc du Membre de Rieuzaal correspond à un banc sans oolithe, qui témoigne d'une baisse brutale de l'hydrodynamisme. A Castelnau et Alvignac s'intercalent des interbancs argileux qui montrent un dispositif caractéristique en "onlap" (Castelnau).

A Magnagues et au Puy d'Issolud, la première surface d'inondation est représentée par un enroûtement ferrugineux à la limite entre le Membre de Rieuzaal et le Membre de Lapoujade. Cette même surface peut s'observer à Loubressac-Lapoujade, où elle constitue la deuxième surface d'inondation. Nous voyons donc à l'échelle du bassin, se manifester le caractère rétrogradant des premiers niveaux transgressifs (ceci se voyant à l'échelle de l'affleurement à Castelnau).

Le même dispositif peut être observer à Turenne et Saillac (où en l'absence de bas niveau marin) cette surface se confond avec la limite de séquence.

D/ Intervalle transgressif (TST 5)

Il est matérialisé par la partie inférieure du Membre de Lapoujade.

A Loubressac-Lapoujade, il est caractérisé par un niveau condensé de macrofaune en place (huîtres et *Pholadomya*), des microfaciès témoignant d'un très faible hydrodynamisme, par la prolifération des nodosariidés et des ostracodes, par une diminution brutale du taux de quartz et de goethite, par une baisse des interstratifiés 14-14 et une augmentation de la vermiculite et de la chlorite. Ces divers caractères peuvent résulter des conditions plus franchement marines et d'un approfondissement des dépôts.

La macrofaune en place (huîtres et *Pholadomya*) indique un milieu calme relativement profond.

L'épaisseur de cet intervalle transgressif augmente légèrement vers le NW (Magnagues) et à Turenne où viennent s'intercaler de petits lits de grès fins et laminés, stratodécoquissants, chargés de microbioclastes et de bioclastes de pentacrines.

Dans cette dernière région la prolifération d'Ammodiscus signale de mauvaises conditions d'oxygénation.

Les conditions d'affleurement ne permettent de caractériser cet intervalle transgressif dans la région de Saint-Laurent et d'Alvignac.

E/ Comme dans l'unité PL 4, la surface d'inondation maximale s'exprime au sein des marnes par un enroûtement ferrugineux séparant deux ensembles à profil microfaunique différent (ACM et AFD) à Loubressac-Lapoujade, Turenne et Magnagues et par des caractères lithologiques distincts à Magnagues (marnes plus indurées de couleur marron).
F/ Prisme de haut niveau marin (HST 5)

Le prisme de haut niveau de la séquence P1 5 se compose très généralement de 4 paraséquences associant marnes et calcaires. A Loubressac-Lapoujade, la première paraséquence débute par les marnes de la partie supérieure du Membre de Lapoujade et se termine par des calcaires stratocroissants. Les trois autres séquences sont à tendance cyclique avec le développement des calcaires à la base et au sommet. Du point de vue du microfaciès, ces séquences montrent, dans les bancs calcaires, une évolution d'un pôle biomicritique gréseux à un pôle biosparitique ou même oolithique (première séquence à Loubressac-Lapoujade et Magnagues).

La tendance à la diminution de profondeur s'exprime aussi bien à l'échelle de la paraséquence qu'à l'échelle du cortège.

La microfaune s'appauvrit dans les calcaires. Dans la famille des nodosaridés, les morphologies droites, enroulées et en voie de déroulement sont en proportions égales.

Les données du palynofaciès indiquent un appauvrissement des peuplements avec d'une part, passage d'un climat humide (P1 44) à un climat plus aride à la partie supérieure (P1 77) d'autre part, par des tendances moins marines (diminution des éléments marins à la fois en proportion et en nombre d'espèces).

Les pics de chlorite ou de kaolinite peuvent correspondre à des surfaces d'inondation de quatrième ordre.

Les données géochimiques nous révèlent une diminution des teneurs en Mn, Fe et Sr (fortes fluctuations) ainsi qu'une augmentation de la teneur en Mg.

Ces même quatre séquences ont été observées tant au Sud, à Alvincac, qu'au NW, à Magnagues et Turenne, et à l'Est à Saint-Laurent-les-Tours. On peut toutefois signaler d'importants changements lithologiques. En effet, les interbancs marneux demeurent plus épais à Alvincac, alors qu'ils se réduisent en épaisseur ou disparaissent à Magnagues et Saint-Laurent-les-Tours. Par ailleurs, le microfaciès des bancs calcaires signale un hydrodynamisme plus faible à Alvincac (faciès micritique) et plus fort à Saint-Laurent-les-Tours (faciès spartique oolithique, structures sédimentaires de type tempestites distales- rides, bancs noduleux, miches et boudinage de bancs-).

A Grèzes, ce prisme de haut niveau ne présente que 3 séquences de calcaires gréseux à flux détritique croissant, à l'intérieur de chaque séquence et d'une séquence à l'autre. A la base de la séquence inférieure apparaissent des rides, au sommet de la séquence supérieur, des auges.
V.1.3 La séquence PL 6

Elle s'exprime exclusivement dans la Formation de la Barre à Pecten.

A/ La limite de séquence correspond à la discontinuité I-C 2. Lorsque les séquences de dépôt sont complètes, elle s'exprime peu dans la stratigraphie des dépôts et dans le microfaciès. D'une manière générale, elle est localisée par une dolomitisation importante de part et d'autre (surtout à Loubressac-Lapoujade, de manière plus atténuée à Magnagues et Turenne). Celle-ci n'existe pas à Alvignac.

Les bancs superposés à cette discontinuité sont généralement plus massifs et plus compacts par disparition des interbancs marneux.

D'un point de vue géochimique, elle se situe au niveau d'un accident négatif de Fe et Sr et d'un accident positif de Mg.

La minéralogie des argiles témoigne d'une coupure nette par une disparition de la fraction argileuse et par un pic de goethite.

En l'absence de cortège de bas niveau marin et lorsque la limite de séquence et la surface de transgression sont confondues (Alvignac et Grèzes), elles s'expriment par une surface érosive associée à un brusque changement de faciès.

B/ Prisme de bas niveau marin (LST 6)

À Loubressac-Lapoujade, le prisme bas niveau marin représenté par le niveau 6, comprend 2 parties : une partie inférieure exclusivement calcaire à bancs épaiss et mal différenciés et une partie supérieure à alternance de bancs calcaires et d'interbancs marneux.

Le microfaciès est homogène de la base au sommet. Il s'agit de packstone/grainstone à ciment spartique témoignant d'un degré d'énergie élevé. La teneur en quartz est faible. Les nodosariidés enroulés et en voie de déroulement prédominent sur les formes droites.

L'analyse au rayon X signale de la base au sommet une décroissance de la teneur en goethite et en kaolinite, une augmentation de la teneur en quartz, en illite et en illite/smectite.

En ce qui concerne les éléments majeurs, on observe une décroissance de la teneur en Mn, une évolution cyclique de la teneur en Mg et des fortes fluctuations des teneurs en Fe et Sr.

À Magnagues, dans une succession lithologique comparable, les caractères du microfaciès montrent une diminution du degré d'énergie par réduction de la taille des éléments figurés (bioclastes).

Cette même tendance évolutive peut s'observer à Alvignac dans un cortège de bas niveau marin moins épais, riche en quartz et à hydrodynamisme plus faible (ciment micritique).

À Saillac, nous observons dans un ensemble exclusivement calcaire 2 paraséquences de microfaciès témoignant d'un hydrodynamisme croissant (évolution de biomicrite gréseuse à une biomicrosparite). La tendance est donc la même que dans les 4 séquences sous-jacentes du
prisme de haut niveau marin (HST 5). L'attribution de ces 2 dernières séquences à un cortège de bas niveau marin s'appuie sur 3 arguments :

- la présence de faciès dolomitisés dans le niveau SA 20 qui pourrait signaler la limite de séquence de dépôt ;
- l'organisation générale (excepté à Grèzes) du prisme de haut niveau marin en 4 séquences de comblement ;
- la disparition des interbancs marneux ;
- le caractère plus bioclastique .

On soulignera toutefois que l'évolution verticale des microfaciès indique, dans la partie méridionale de la région étudiée, une diminution de l’hydrodynamisme, alors que dans la région de Turenne elle montre une augmentation du niveau d'énergie, en raison de conditions de dépôts beaucoup plus proximales .

C/ La première surface d'inondation, TS 6, (discontinuité I-C3) s'exprime partout par :

- une réduction de l'épaisseur des bancs ;
- l'apparition de brachiopodes ;
- l'arrivée massive de quartz ;

A Saillac, cette surface est caractérisée par une concentration de coquilles de brachiopodes, lamellibranches et de bélénmites disposées dans tous les sens caractérisant un remaniement sur place.

Par contre, il n'apparaît ni surface durcie, ni surface oxydée, ni surface érosive, lorsque la séquence est complète .

D/ Intervalle transgressif (TST 6)

L'intervalle transgressif est constitué à Loubressac-Lapoujade de bancs centimétriques biens différenciés, à surfaces de stratification légèrement onduleuses. Le microfaciès correspond à une biomicrite packstone/grainstone gréseuse à petits bioclastes de crinoïdes remaniés. De la base au sommet, la taille des bioclastes diminue (baisse d'énergie) et le nombre de débris de crinoïdes augmente .

Ce cortège se caractérise aussi par l'abondance de brachiopodes, une augmentation très nette des formes droites de nodosariidés, indiquant probablement un caractère marin plus affirmé et une tranche d'eau plus élevée. C'est aussi dans ce cortège qu'apparaît le couple de foraminifères Verneulinoides mauriti et Glomospira sp .

L'analyse au rayon X indique des fortes fluctuations des teneurs en illite et en gochtite et une tendance à l'augmentation de la teneur en quartz .

L'analyse géochimique des carbonates montre une tendance à la diminution des teneurs en Sr et Fe, une cyclicité de la teneur en Mg et une teneur constante en Mn.

-236-
Cette unité montre une grande homogénéité dans les caractéristiques lithologiques, micropétrographiques et paléontologiques.

La différence principale porte sur l'épaisseur de cet ensemble qui décroît de Loubressac-Lapoujade (4 m) vers Magnaugues (2,5 m) et Turenne (2 m).

Nous signalerons par ailleurs l'identification de rides symétriques à Saint-Laurent-les-Tours. A Grèzes, ce cortège transgressif, plus épais, se compose essentiellement de bancs calcaires à fins éléments de quartz. La diminution du pourcentage de ces éléments détritiques de la base au sommet de chaque banc pourrait être liée à leur dispositif rétrogradant. Il contient à la base des galets de socle. Le caractère marin s'affirme vers le haut avec la prolifération de spicules d'éponges.

E/ Du fait des mauvaises conditions d'affleurement, le cortège de haut niveau marin n'a pu être observé qu'à Magnaugues. Au-dessus d'une surface durcie qui représenterait la surface d'inondation maximale, il est réduit à un mince banc de biodolomérite.

Sa surface supérieure fortement karstifiée et soulignée par une couche de lignite correspond à la limite de la séquence TOA 1 (Qajoun, 1993). Il est probable qu'une partie du haut niveau de la séquence PL 6 a disparu par érosion et/ou altération. La dolomitisation des bancs sous-jacents observée au sommet de la séquence PL 6 à Loubressac-Lapoujade, Magnaugues et Grèzes, pourrait résulter de la phase d'émission qui a accompagné la baisse du niveau marin entre les 2 séquences PL 6 et TOA 1.

V.2 CARACTERES GENERAUX DES CORTEGES ET SURFACES

L'interprétation en termes de stratigraphie séquentielle permet de dégager un certain nombre de traits communs pour les 2 types de surface et cortèges.

- Les surface d'inondation maximale généralement situées dans les marnes (PI 4, PI 5) se signalent toujours par une croûte ferrugineuse et par un changement majeur dans les assemblages micro et macro paléontologiques.

- La première surface d'inondation est diachrone. Cela s'observe particulièrement bien lorsqu'elle sépare un bas niveau marin à dominante calcaire d'un intervalle transgressif à dominante marneuse (PI 5). De ce fait dans les parties profondes la croûte ferrugineuse observée au contact calcaire-marne n'est pas la première surface d'inondation (à la base de l'intervalle transgressif) mais une des surfaces d'inondation suivantes.

- La limite de séquence au sein des calcaires (I-C 1, I-C 2) est souvent très discrète. Elle ne correspondent à des surfaces érosives que dans 2 cas :

 1/ lorsqu'elle précède l'installation d'un corps de bas niveau de la haute énergie, I-C 1 dans la région de de Loubressac-Lapoujade et Castelnau.

-237-
2/ lorsqu'elle est confondue avec une surface de transgression (Saint-Laurent-les-Tours et Grèzes, niveau 6).

Les cortèges de bordure de plate forme sont caractérisés par des fortes variations d'épaisseur et de de faciès dans des environnements d'hydrodynamisme plus fort.

Les cortèges transgressifs et de haut niveau marin ont des caractéristiques plus uniformes tant par l'épaisseur que par la lithologie, que par les microfaciès. Les premiers se distinguent des seconds par des bancs plus minces (pouvant résulter d'un taux de sédimentation plus faible et et des arrêts de sédimentation plus marqués), par une décharge de terrigènes fins et un meilleur tri des bioclastes.

Dans les hauts niveaux marins, on peut établir à l'échelle du bassin des corrélations groupes de parasequences par groupe de parasequences; dans l'intervalle transgressif cette corrélation sera encore plus précise puisqu'elle peut se faire banc par banc. La remarquable homogénéité des intervalles transgressifs aboutit à un positionnement identique des gisements d'ammonites dans les différentes coupes (Membre de Lapoujade : niveau fossilière situé 40 cm au dessus de la discontinuité C-M, à Magnagues, Turenne et Loubressac-Lapoujade).

V.3 CALAGE BIOSTRATIGRAPHIQUE DES SEQUENCES ET CORTEGES Sédimentaires

Les séquences de dépôt sont datées à partir des ammonites qui ont été exclusivement récoltées dans les intervalles transgressifs et plus rarement dans les cortèges de haut niveau marin (Saint-Laurent-les-Tours).

L'intervalle transgressif de la séquence P1 4 a fourni à Loubressac-Lapoujade, A. margaritatus (zone à Margaritatus).

Le cortège de haut niveau marin de la séquence P1 4 contient une association d'ammonites qui indique la sous-zone à Gibbosus.

L'intervalle transgressif de la séquence P1 5 a fourni à Loubressac-Lapoujade, Magnagues, Turenne et Miers une association d'ammonites caractérisant la sous-zone à Gibbosus. La limite de séquence P1 5 est intra-Gibbosus.

L'intervalle transgressif de la séquence P1 6 contient à Loubressac-Lapoujade et à Alvignac, P. hawkerense qui date de la sous-zone à Haukerense.

La limite entre les séquences P1 5 et P1 6 se situe au-dessus de la zone à Margaritatus dans la zone à Spinatum, soit dans la sous-zone à Apyrenum, soit dans la sous-zone à Haukerense.
V.4 ORGANISATION GEOMETRIQUE DES DEPOTS ET
PALEOTOPOGRAPHIE

Dans la région de Saint-Céré (coupe de Saint-Laurent-les-Tours) d'une part et dans la région de Turene d'autre part, les cortèges de bas niveau marins sont soit absents (séquence Pl 3 à Turene, séquence Pl 4 à Turene et Saillac, séquence Pl 6 à Saint-Laurent-les-Tours et Grèzes) soit réduits (séquences Pl 5 à Saint-Laurent-les-Tours et Pl 6 à Turene). Cette caractéristique s'explique par position topographique plus élevée de la bordure septentrionale du domaine étudié. Une telle interprétation est en accord avec les caractères plus littoraux des cortèges sédimentaires présents.

Dans la partie centrale du bassin (Loubressac-Lapoujade, région de Castelnau et Magnagues), tous les cortèges sédimentaires sont présents et les cortèges de bas niveau marin, sédimentés sous une faible tranche d'eau, présentent leur épaisseur maximale.

Dans la partie méridionale du secteur étudié, les cortèges de bas niveau marin, qui indique des milieux de sédimentation plus profonds, sont plus minces. Cette région correspond donc à la partie la plus distale du bassin dans notre domaine d'étude.

Nous pouvons donc conclure de ces observations que :

- le bassin s'abaisse progressivement du Nord vers Sud avec dans l'ensemble une épaisseur de dépôt croissante, l'hypothèse précédemment émise d'un dispositif en blocs basculés (Brunel et al., 1995) ne peut donc être retenue.

- les cortèges de bas niveau constituent en fait des prismes de bordure de plate-forme. Les surfaces qui les limitent à leur base correspondent à des discontinuité de type 2 (Van Wagoner). Seul la limite de séquence située au sommet de la Barre à pecten (entre Pl 6 et TOA 1) est une discontinuité de type 1 déterminant une émersion de l'ensemble du bassin quercynois (ref Rey). Il n'existe pas de contrôle notable de la géométrie des dépôts et des paléoenvironnements au niveau des grands accidents orientés Est-Ouest (telle la faille de Padirac). Un contrôle tectonique n'est donc pas facile à mettre en évidence sur la sédimentation au Lias moyen.

Evolution à l'échelle du 2ème ordre

Dans l'ensemble du domaine étudié le maximum d'approfondissement indiqué par la microfaune se situe au niveau de la surface d'inondation maximale de la séquence Pl 4. Le maximum de régression avec érosion et karstification se place entre les séquences Pl 6 et TOA 1. L'ensemble des séquences Pl4, Pl 5 et Pl 6 s'inscrit dans une évolution de 2ème ordre régressive. Cette tendance à long terme s'exprime aussi par la diminution progressive des marines et l'augmentation correlative des bancs calcaires. Toutefois l'existence dans ce contexte régressif du cortège du bas niveau de la séquence Pl 6 à Turene et Saillac pose problème
puisque les 2 séquences sous-jacentes sont dépourvues de leur prisme de bordure de plate forme.

Deux explications peuvent être proposées :

1/ Une explication sédimentaire :
La production sédimentaire dans le haut niveau marin sous jacent a été localement insuffisante pour supprimer tout l'espace disponible lors de la hausse du niveau marin.

2/ Une explication tectonique :
Le jeu de la faille de Condat-Meyssac, à la limite de séquence, aurait provoqué un affaissement du compartiment de Martel et créé un nouvel espace disponible dans la région de Turenne.

A Saint-Laurent-les-Tours, situé en position plus littoral ce jeu positif aurait été insuffisant pour favoriser la sédimentation d'un prisme de bordure de plate forme. Grèzes situé au nord de la faille de Condat-Meyssac serait resté en position haute.

V.5 Comparaison avec le Quercy Meridional

Le même nombre de séquences de dépôts a été observé pour le même intervalle de temps dans le Quercy Meridional (Brunel et al., 1995) avec la même évolution au niveau du deuxième ordre dans un contexte sédimentaire et paléoenvironnemental très proche.

Les cortèges sédimentaires ont des caractéristiques très comparables. La présence dans la région de la Gresigne, de marqueurs paléontologiques à d'autres niveaux de la pile stratigraphique permet de préciser le calage chronostratigraphique (Rey et al., 1995).

- La surface d'inondation maximale Pl 4 qui correspond aussi dans la région de la Grésigne (discontinuité Db, Cubaynes, 1986 et Brunel, 1992) à une croûte ferrugineuse, est située au sommet de l'horizon à Depressum.

- La limite de séquence Pl 5, intra-gibbosus, est localisée à la base du Membre des Marnes à taphoséquence de pente (Rey et Cubaynes, 1991).

- Le prisme de haut niveau marin de la séquence Pl 5 est daté immédiatement au dessous de la Formation de la Barre à Pecten de l'horizon à Solarc (Cubaynes, 1986). Par conséquent la conjonction des données biostratigraphiques du Quercy méridional et du Quercy septentrional permet de considérer que la surface d'inondation maximale de la séquence Pl 5 est située, soit à la limite des sous-zones à Gibbosus et Apyrenum, soit à la base de la sous-zone Apyrenum.

Dans le Quercy méridional comme dans notre région d'étude la Formation de la Barre à Pecten est composée de 4 cortèges : HST 5, LST 6, TST 6 et HST 6 dans la partie la plus profonde du bassin. Dans les domaines plus proximaux de Villefranche-de-Rouergue et de Figeac le prisme de bas niveau marin (LST 6) disparaît.
L'intervalle transgressif de la séquence Pl 6 qui est précisément daté de la sous-zone à Hawskerense dans le Quercy septentrional ne contient pas d'amonites dans le Quercy méridional.

Par contre, le prisme de haut niveau marin de la séquence Pl 6 que nous n'avons guère pu étudier dans notre domaine d'étude (excepté à Magnagnes) est composé dans le Quercy méridional de 1 à 2 bancs caractérisant les sous-zones à Paltus et Semicelatum. La surface d'inondation maximale de la séquence Pl 6 se situe très exactement à la limite entre Domérien et Toarcien.
CHAPITRE VI
CONCLUSIONS
GÉNÉRALES
CHAPITRE VI : CONCLUSIONS GENERALES

Ce travail apporte un certain nombre d'éléments nouveaux tant en ce qui concerne les caractéristiques du Lias moyen du Quercy septentrional, que les méthodes d'identification et les caractéristiques des cortèges sédimentaires et séquences de dépôt de 3ème ordre dans des milieux à sédimentation marno-calcaire.

VI 1 APPORTS SUR LE DOMERIEN DU QUERCY SEPTENTRIONAL

A/ Découpage lithostratigraphique (Fig.54)

Cinq unités lithostratigraphiques ont été reconnues dans le Quercy septentrional, dont deux formations et trois membres :

- la Formation de Valeyres découpée en 3 membres, le Membre des Argilites grises (alternance marnes-calcaires, niveaux 1 et 2), le Membre de Rieuzaal (calcaire, niveau 3) et le Membre de Lapoujade (marnes, niveau 4). Les deux derniers membres représentent l'équivalent septentrional du Membre des Marnes à taphoséquences de pente, du Quercy méridional;
- la Formation de la Barre à Pecten, à dominante calcaire (niveaux 5, 6 et 7).

B/ Données chronostratigraphiques nouvelles (Fig. 54)

Les unités lithostratigraphiques ont toutes été datées à l'échelle de la zone ou de la sous-zone d'ammonites :

- le Membre des Argilites grises est rapporté à la zone à Margaritatus;
- Le Membre de Rieuzaal date de la zone à Margaritatus, sous-zone à Gibbosus probable (Saint-Laurent-les-Tours);
- le Membre de Lapoujade indique la zone à Margaritatus, sous-zone à Gibbosus;
- la Formation de la Barre à Pecten date de la zone à Spinatum, sous-zone à Hawskerense (niveau 7, Loubressac et Alvinac).

C/ Paléogéographie

La distribution, dans l'espace, des paléoenvironnements nous a permis de reconstituer un bassin sédimentaire s'abaissant du Nord au Sud et du Nord-Est au Sud-Ouest, sans accident paléotopographique majeur.

Les différentes analyses effectuées rendent possibles l'établissement d'une évolution verticale des environnements. Le Membre des Argilites grises est attribué à un domaine d'offshore, le Membre de Rieuzaal à un domaine de shoreface (niveau 3 oobioclastique et épais, à Loubressac-Lapoujade, Castelnau, Saint-Michel-Loubéjou et Miers) ou d'offshore
(autres coupes), le Membre de Lapoujade à un domaine d'offshore, et la Formation de la Barre à Pecten à un domaine d'offshore ou de foreshore à shoreface, à Grèzes.

D/ Stratigraphie séquentielle (Fig. 54)
Quatre séquences de dépôt de 3ème ordre ont été identifiées :
- la séquence PL 3 (zone à Margaritatus), dont seul le prisme de haut niveau marin (HST 3) a été observé à Turenne;
- la séquence PL 4 (zone à Margaritatus), composée de trois cortèges sédimentaires dans la partie profonde du bassin (Gintrac), et de deux cortèges dans la partie haute (Turenne);
- la séquence PL 5 (zone à Margaritatus, sous-zone à Gibbosus, et zone à Spinatum), comprenant comme précédemment, trois cortèges sédimentaires au Sud (région de Loubressac-Lapoujade), et deux au Nord (Turenne et Saillac);
- la séquence PL 6, dont l'intervalle transgressif date de la zone à Spinatum, sous-zone à Hawkerenser. Ses trois cortèges sédimentaires n'ont été reconnus qu'au niveau de la coupe de Magnagues. A Loubressac-Lapoujade, Turenne et Saillac, seuls le prisme de bas niveau marin (LST 6) et l'intervalle transgressif (TST 6) ont été distingués. À Grèzes et Saint-Laurent-les-Tours, elle ne comporte que l'intervalle transgressif.

Ces séquences s'organisent, à l'échelle du second ordre, dans une évolution générale régressive, de la séquence PL 3 (la plus profonde) à la séquence PL 6 (surface karstifiée du dernier banc de la Barre à Pecten à Magnagues).

VI 2 Méthodes d'identification et de caractérisation des cortèges et séquences
L'identification des cortèges et des discontinuités qui les séparent a pu être obtenue par l'utilisation conjointe de diverses méthodes disponibles en stratigraphie, donc par une démarche de stratigraphie intégrée : sédimentologie (figures et structures sédimentaires, micropétrographie), géochimie, minéralogie, micropaléontologie et palynologie.
Cette démarche a permis d'affiner et de conforter les interprétations par des résultats concordants, aboutissant à la même logique en terme d'évolution sédimentaire.
Ce travail a confirmé en particulier l'intérêt de l'étude des associations de foraminifères benthiques (méthodes quantitative et qualitative) pour la reconnaissance des cortèges sédimentaires dans des séries de lithologie homogène comme les marnes du Membre des Argilites grises et du Membre de Lapoujade.
Dans ce type de dépôt et d'environnement, le repérage des diverses discontinuités ou discordances qui séparent les cortèges sédimentaires est plus ou moins aisé :
- les surface d'inondation maximale se reconnaissent par le développement de croûtes ferrugineuses dans les séries marneuses homogènes (Loubressac-Lapoujade et Puy d'Issolud);
- les surfaces de transgression sont très faciles à reconnaître lorsqu'elles se situent à la limite entre calcaires et marnes. Cette tâche est beaucoup plus dure quand elles se trouvent dans des séries à dominante calcaire;
- les limites de séquence sont les plus difficiles à reconnaître lorsque la séquence est complète (toutes les coupes, excepté celles de Grèzes et de Saint-Laurent-les-Tours).

Corrélations et cortèges sédimentaires
Dans l'exemple étudié, le pouvoir de corrélation varie avec le cortège sédimentaire :
- les prismes de bas niveau marin peuvent être corréles à l'échelle du cortège sédimentaire (3ème ordre);
- les intervalles transgressifs sont corréles à l'échelle des bancs dans les séries calcaires, et des alternances du contenu microfaunique et minéralogique dans les séries marneuses (probablement assimilables à des paraséquences de 3ème ordre);
- les prismes de haut niveau marin sont corréles à l'échelle des groupes de paraséquences de 4ème ordre.
Figure 54 : Lithostratigraphie, Biostratigraphie, Séquences de dépôts et cycles régressifs-transgressifs du Lias moyen et supérieur du Quercy (Rey, 1995).
TABLE DES ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig. 1</th>
<th>Cadre géographique du Quercy.</th>
<th>p. 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2</td>
<td>Cadre géologique et structural du bassin quercynois.</td>
<td>p. 18</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Cadre géologique et structural du secteur d'étude.</td>
<td>p. 19</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Lithostratigraphie, biostratigraphie et chronologie du Lias moyen</td>
<td>p. 25</td>
</tr>
<tr>
<td></td>
<td>et supérieur du Quercy.</td>
<td></td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Situation géographique des coupes lithologiques étudiées.</td>
<td>p. 30</td>
</tr>
<tr>
<td>Tab 1</td>
<td>Position géographique des coupes lithologiques,</td>
<td>p. 31</td>
</tr>
<tr>
<td></td>
<td>et unités lithostratigraphiques étudiées.</td>
<td></td>
</tr>
<tr>
<td>Fig. 6</td>
<td>La coupe-type de Loubressac-Lapoujade.</td>
<td>p. 32</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Lithologie et position de la macrofaune dans les marnes sus-jacentes</td>
<td>p. 35</td>
</tr>
<tr>
<td></td>
<td>à la discontinuité calcaires-marnes.</td>
<td></td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Coupes de Gintrac et du Puy d'Issolud.</td>
<td>p. 42</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Coupe de Magnagues.</td>
<td>p. 44</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Coupe de Turenne.</td>
<td>p. 46</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Coupe d'Alvignac.</td>
<td>p. 48</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>Coupe de Saint-Laurent-les-Tours.</td>
<td>p. 50</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>Coupe de Saillac.</td>
<td>p. 53</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>Coupe de Magnagues. Limite Domérien-Toarcien.</td>
<td>p. 58</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>Coupe de Grèzes.</td>
<td>p. 64</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>Schéma des corrélations stratigraphiques des différents niveaux</td>
<td>p. 66</td>
</tr>
<tr>
<td></td>
<td>lithologiques et des discontinuités sédimentaires.</td>
<td></td>
</tr>
<tr>
<td>Fig. 17</td>
<td>Corrélation et épaisseurs des unités lithostratigraphiques.</td>
<td>p. 68</td>
</tr>
<tr>
<td>Fig. 18</td>
<td>Coupe de Loubressac-Lapoujade. Minéralogie des argiles.</td>
<td>p. 78</td>
</tr>
<tr>
<td>Fig. 19</td>
<td>Coupe de Loubressac-Lapoujade. Intensité des pics de diffraction</td>
<td>p. 79</td>
</tr>
<tr>
<td></td>
<td>du quartz et de la goethite.</td>
<td></td>
</tr>
<tr>
<td>Fig. 20</td>
<td>Coupe de Loubressac-Lapoujade. Données géochimiques : teneur</td>
<td>p. 82</td>
</tr>
<tr>
<td></td>
<td>des prélèvements en manganèse, fer, strontium et magnésium.</td>
<td></td>
</tr>
<tr>
<td>Tab. 2</td>
<td>Coupe de Loubressac-Lapoujade. Tableau de répartition stratigraphique</td>
<td>p. 84</td>
</tr>
<tr>
<td></td>
<td>des taxons de spores et pollens, Dinokystes, Acritarches et algues.</td>
<td></td>
</tr>
<tr>
<td>Fig. 21</td>
<td>Coupe de Loubressac-Lapoujade, route, plan Nord-Sud. Figures</td>
<td>p. 87</td>
</tr>
<tr>
<td></td>
<td>sédimentaires du Membre de Rieuzaal.</td>
<td></td>
</tr>
<tr>
<td>Fig. 22</td>
<td>Coupe de Loubressac-Lapoujade, route, plan Est-Ouest. Figures</td>
<td>p. 88</td>
</tr>
<tr>
<td></td>
<td>sédimentaires du Membre de Rieuzaal.</td>
<td></td>
</tr>
<tr>
<td>Fig. 23</td>
<td>Coupe de Loubressac-Lapoujade, carrière, plan Nord-Sud. Figures</td>
<td>p. 89</td>
</tr>
<tr>
<td></td>
<td>sédimentaires du Membre de Rieuzaal.</td>
<td></td>
</tr>
<tr>
<td>Fig. 24</td>
<td>Coupe de Loubressac-Lapoujade, carrière, plan Est-Ouest. Figures</td>
<td>p. 90</td>
</tr>
<tr>
<td></td>
<td>sédimentaires du Membre de Rieuzaal.</td>
<td></td>
</tr>
<tr>
<td>Tab. 3</td>
<td>Coupe de Loubressac-Lapoujade, route, plan Nord-Sud. Pendagématrie.</td>
<td>p. 91</td>
</tr>
<tr>
<td>Tab. 4</td>
<td>Coupe de Loubressac-Lapoujade, route, plan Est-Ouest. Pendagématrie.</td>
<td>p. 91</td>
</tr>
</tbody>
</table>

-249-
Tab. 5 : Coupe de Loubressac-Lapoujade, carrière, plan Nord-Sud. Pendagémétrie. p. 92
Tab. 6 : Coupe de Loubressac-Lapoujade, carrière, plan Est-Ouest. Pendagémétrie. p. 92
Fig. 25 : Coupe de Loubressac-Lapoujade. Figuration des variables de l'analyse minéralogique dans les plans factoriels F₁-F₂, F₁-F₃ et F₂-F₃. p. 109
Fig. 26 : Coupe de Loubressac-Lapoujade. Variation des valeurs de niveaux de prélèvements sur l'axe F₁ de l'A.C.P. p. 110
Fig. 27 : Coupe de Loubressac-Lapoujade. Variation des valeurs de niveaux de prélèvements sur l'axe F₂ de l'A.C.P. p. 111
Fig. 28a : Coupe de Loubressac-Lapoujade. Variation des valeurs de niveaux de prélèvements sur l'axe F₃ de l'A.C.P. p. 112
Fig. 28b : A.C.P. des données de la minéralogie des argiles. Figuration des niveaux de prélèvements dans le plan factoriel F₁-F₂ p. 113
Fig. 29 : Esquisse paléogéographique du Membre de Rieuval. p. 127
Fig. 30 : Schéma de corrélation des niveaux lithologiques, des séquences micropétiographiques et des discontinuités sédimentaires. p. 146
Fig. 31 : Position des prélèvements marnieux au sein des coupes lithologiques. p. 152
Tab. 7 : Coupe de Loubressac-Lapoujade. Tableau de répartition stratigraphique des taxons de foraminifères benthiques. p. 155
Fig. 32 : Coupe de Loubressac-Lapoujade. Comptage : microfaune, foraminifères et ostracodes. p. 157
Fig. 33 : Coupe de Loubressac-Lapoujade. Comptage : Ammodiscus, nodosariidés. Fréquences relatives. p. 158
Tab. 8 : Coupe de Loubressac-Lapoujade. Tableau de répartition stratigraphique des taxons d'ostracodes. p. 161
Tab. 9 : Coupe de Magniac. Tableau de répartition stratigraphique des taxons de foraminifères benthiques. p. 165
Fig. 34 : Coupe de Magniac. Comptage et fréquences relatives. p. 167
Tab. 10 : Coupe de Magniac. Tableau de répartition stratigraphique des taxons d'ostracodes. p. 168
Tab. 11 : Coupe du Puy d'Issolud. Tableau de répartition stratigraphique des taxons de foraminifères benthiques. p. 171
Fig. 35 : Coupe du Puy d'Issolud. Comptage. p. 172
Tab. 12 : Coupe du Puy d'Issolud. Tableau de répartition stratigraphique des taxons d'ostracodes. p. 173
Tab. 13 : Coupe de Gintrac. Tableau de répartition stratigraphique des taxons de foraminifères benthiques. p. 175
Fig. 36 : Coupe de Gintrac. Comptage : microfaune, foraminifères et ostracodes. p. 176
Fig. 37 : Coupe de Gintrac. Comptage : Ammodiscus, nodosariidés. Fréquences relatives. p. 177
Tab. 14 : Coupe de Gintrac. Tableau de répartition stratigraphique des taxons d'ostracodes. p. 179
Tab. 15 : Coupe de Turenne. Tableau de répartition stratigraphique des taxons de foraminifères benthiques. p. 183
Fig. 38 : Coupe de Turenne. Comptage : microfaune, foraminifères et ostracodes.

Fig. 39 : Coupe de Turenne. Comptage : Ammodiscus, nodosariidés. Fréquences relatives.

Tab. 16 : Coupe de Turenne. Tableau de répartition stratigraphique des taxons d'ostracodes.

Tab. 17 : Coupe de Saint-Michel-de-Bannières. Tableau de répartition stratigraphique des taxons d'ostracodes.

Tab. 18 : Coupe de Saint-Michel-de-Bannières. Tableau de répartition stratigraphique des taxons de foraminifères benthiques.

Fig. 40 : Coupes de Loubressac-Lapoujade et de Turenne. Taux de renouvellement et nombre de présence par niveaux de prélèvements.

Fig. 41 : Coupes de Gintrac et Magnagues. Taux de renouvellement et nombre de présence par niveaux de prélèvements.

Fig. 42 : Variations des valeurs (scores) des gisements sur le premier axe (F₁) de l'A.C.M. des tableaux de répartition stratigraphique des taxons de foraminifères ou d'ostracodes.

Fig. 43 : Coupe de Loubressac-Lapoujade. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 7). Classification hiérarchique.

Fig. 44 : Coupe de Loubressac-Lapoujade. Membre des Argilites grises. Figuration des gisements dans le plan factoriel F₁-F₂

Fig. 45 : Coupe de Loubressac-Lapoujade. Membre de Lapoujade. Figuration des gisements dans le plan factoriel F₁-F₂

Fig. 46 : Coupe de Magnagues. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 9). Classification hiérarchique et figuration des gisements dans le plan factoriel F₁-F₂

Fig. 47 : Coupe de Gintrac. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 13). Figuration des gisements dans les plans factoriels F₁-F₂ et F₁-F₃

Fig. 48 : Coupe de Gintrac. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 13). Classification hiérarchique et figuration des gisements dans le plan factoriel F₂-F₃

Fig. 49 : Coupe de Gintrac. A.C.M. du tableau de répartition des ostracodes (Tab. 14). Classification hiérarchique et figuration des gisements dans le plan factoriel F₁-F₂

Fig. 50 : Coupe de Turenne. A.C.M. du tableau de répartition des foraminifères benthiques (Tab. 15). Classification hiérarchique et figuration des gisements dans le plan factoriel F₁-F₂

Tab. 18 : Coupe de Turenne. Analyse Factorielle Discriminante.

Tab. 19 : Coupe de Gintrac. Analyse Factorielle Discriminante. Foraminifères.

Tab. 20 : Coupe de Gintrac. Analyse Factorielle Discriminante. Ostracodes.

Fig. 51 : Tableau de répartition des taxons de foraminifères benthiques par cortèges sédimentaires.

Fig. 52 : Répartition quantitative des taxons de foraminifères benthiques et des morphologies des taxons du genre Lenticulina par cortèges sédimentaires.
Fig. 53 : Stratigraphie séquentielle. Découpage en cortèges sédimentaires et séquences de dépôts. Corrélations des cortèges et discontinuités sédimentaires
p. 230

Fig. 54 : Lithostratigraphie, Biostratigraphie, Séquences de dépôts et cycles régressifs-transgressifs du Liassic moyen et supérieur du Quercy
p. 247

Pl. 1 : Ostracodes.
Pl. 2 : Ostracodes.
Pl. 3 : Ostracodes.
Pl. 4 : Foraminifères benthiques.
Pl. 5 : Foraminifères benthiques.
Pl. 6 : Palynologie.
Pl. 7 : Coupe de Loubressac-Lapoujade et Castelnau. Photo paysage du Membre de Rieuxal.
Pl. 8 : Coupe de Puymule et La Rouquette. Photo paysage du Membre de Rieuxal.
Pl. 9 : Coupe de Saint-Michel-Loubéjou et Magnagues. Photo paysage du Membre de Rieuxal.
REFERENCES BIBLIOGRAPHIQUES

ASTRUC J.-G., (sous-presse) - Carte géologique de la France à 1/50000, feuille 809 : Souillac, carte géologique.

Planches photographiques
PLANCHE 1

Fig. 1 à 5 Polycopc cerasia Blake 1876
1 C vue latérale droite, morphe réticulée (x75)
2 C vue latérale droite, morphe réticulée, juvénile probable (x100)
3 C vue latérale gauche, morphe lisse (x75)
4 C vue latérale gauche, morphe lisse (x75)
5 C vue dorsale probable (x75)
Carixien-Domérien du Quercy septentrional (fig. 1, 3 à 5 : éch. PJT. 10 ; fig. 2 : éch. SMI. 22).

Fig. 6-7 Cytherelloidea anningi Lord 1974
6 VG vue latérale (x50)
7 VD vue latérale (x50)
Domérien du Quercy septentrional (éch. GI. 16).

Fig. 8 Cardobairdia sp. K (Apostolescu 1959)
8 C vue latérale droite (x75)
Carixien du Quercy (éch. SMI. 15).

Fig. 9 à 12 Pseudohealidia bispinosa Grundel 1964
9 C vue ventrale, détail de la fig. 10, montrant les 2 épines postérieures (x250)
10 C vue ventrale (x50)
11 C vue latérale droite (x75)
12 C vue latérale gauche (x75)
Carixien sommial du Quercy (éch. SMI. 15).

Fig. 13 Pseudohealidia cf. ecaucensis (Apostolescu 1959)
13 C vue latérale droite (x75)
Domérien du Quercy (éch. PJ. 1).

Fig. 14 Pseudohealidia truncata Malz 1971
14 C vue latérale droite (x75)
Domérien du Quercy (éch. GI. 24).

Fig. 15 Ledahia septeneria Grundel 1964
15 C vue latérale droite (x75)
Carixien du Quercy septentrional (éch. SMI. 15).

Fig. 16 à 22 Ompocconcha gr. amathej Tribel 1941
16 C vue latérale droite (x50)
17 VG vue latérale (x50)
18 VD vue latérale (x50)
19 VD vue latérale, détail de la fig. 18 montrant les 3 épines postéro-ventrales (x300)
20 VG vue latérale (x50)
21 C vue latérale gauche, stade juvénile (x50)
22 C vue latérale gauche, stade juvénile (x50)
Carixien-Domérien du Quercy septentrional (éch. SMI. 15).

Fig. 23 à 25 Ompocconcha cf. contractula Tribel 1941
23 C vue latérale gauche (x50)
24 C vue dorsale (x50)
25 C vue latérale droite (x50)
Domérien du Quercy (fig. 23-24 : éch. MG. B ; fig. 25 : éch. TU. 14).

Fig. 26 à 30 Ompocconchella lapoujadensis Andreu et Colin à paraître
26 C vue latérale droite, stade juvénile (x75)
27 C vue latérale gauche, stade juvénile (x75)
28 C vue dorsale, stade juvénile (x75)
29 C vue latérale droite, stade juvénile (x50)
30 C vue latérale droite, stade juvénile (x50)
Domérien du Quercy (fig. 26 à 28 : éch. PJ. 1 ; fig. 29 à 30 : éch. GI. 19).
PLANCHE 2

Fig. 1 à 12 *Omoconchella lapouyiadensis* Andreu et Colin à paraître

1 C vue latérale droite, détail de la fig. 29, pl. 1, montrant l'épine postérieure sur la VD et la déformation correspondante sur la VG (x175)
2 C vue dorsale (x50)
3 C vue latérale droite (x50)
4 C vue latérale gauche (x50)
5 C vue ventrale (x50)
6 VG vue interne (x75)
7 VD vue interne, détail de la fig. 6 montrant la charnière (x250)
8 VD vue latérale (x50)
9 VD vue interne, détail de la fig. 11 montrant la charnière (x250)
10 C vue latérale droite (x75)
11 VD vue interne (x75)
12 VD vue interne, détail de la fig. 11 montrant les empreintes des muscles adducteurs (x250)

Domérien du Quercy (fig. 1: éch. Gl. 19; fig. 2 à 12: éch. PJ. 1).

Fig. 13 à 16 *Omoconchella propinqua* Malz 1971

13 C vue latérale droite (x50)
14 C vue latérale gauche (x50)
15 VD vue latérale (x50)
16 C vue dorsale (x50)

Domérien du Quercy (éch. SML. 22).

Fig. 17 à 21 *Omoconchella gruendeli* Malz 1971

17 C vue latérale droite (x75)
18 C vue latérale gauche (x75)
19 C vue ventrale (x75)
20 C vue latérale droite (x50)
21 C vue latérale gauche (x50)

Carixien-Domérien du Quercy (fig. 17 à 19 : éch. PJ. 1 ; fig. 20-21 : éch. SML. 19).

Fig. 22 à 24 *Omoconchella* sp.

22 C vue latérale droite femelle (x50)
23 VD vue latérale, mâle (x50)
24 C vue dorsale (x50)

Domérien du Quercy (éch. Gl. 27).

Fig. 25 à 27 *Pheidolestes* Apostolescu 1959

25 C vue dorsale (x50)
26 C vue latérale gauche (x50)
27 C vue latérale droite (x50)

Carixien du Quercy (éch. SML. 15).
Fig. 1 à 8 **Kinkelina querciensis** Andreu et Bruncel à paraître

1 C vue latérale gauche, mâle (x50)
2 C vue latérale gauche, femelle (x30)
3 C vue latérale droite, femelle (x30)
4 C vue latérale droite, femelle (x50)
5 C vue dorsale, mâle (x50)
6 C vue dorsale, femelle (x50)
7 C vue ventrale, mâle (x50)
8 VG vue interne, détail de la fig. 9, montrant les empreintes des muscles adducteurs (x375)
9 VG vue interne, femelle (x75)
10 VG vue interne, femelle, détail de la fig. 9 montrant la charnière (x250)
Domérien du Quercy (éch. PJ. 1).

Fig. 11-12 **Isobythocypris unispirata** Apostolescu 1959

11 C vue latérale droite (x75)
12 C vue latérale droite (x75)
Domérien du Quercy (éch. TU. 29).

Fig. 13 à 17 **Gramannella apostolesci** (Gramann 1962)

13 C vue latérale gauche, stade juvénile (x75)
14 C vue latérale gauche (x75)
15 C vue latérale droite (x75)
16 C vue dorsale (x75)
17 C vue latérale droite (x75)
Domérien du Quercy (éch. PJ. 3).

Fig. 18 à 20 **Liasina laecocolata** (Apostolescu 1959)

18 C vue latérale droite (x75)
19 C vue latérale gauche, stade juvénile probable (x100)
20 C vue dorsale (x100)
Domérien du Quercy (fig. 18 : éch. SML. 22 ; fig. 19-20 : éch. PJ. 1).

Fig. 21-22 **Liasina sp. vestitulifera** Gramann 1966

21 C vue latérale droite (x75)
22 C vue latérale gauche (x50)
Domérien du Quercy (éch. MG. I).

Fig. 23-24 **Liasina sp.**

23 C vue latérale droite (x50)
24 C vue latérale gauche (x50)
Domérien du Quercy (éch. MG. I).

Fig. 25 à 27 **Pontocyprilla elongata** (Blake 1876)

25 C vue dorsale (x50)
26 C vue latérale droite (x50)
27 C vue latérale gauche (x50)
Carixien-Domérien du Quercy (éch. SML. 22).

Fig. 28 **Lophodentina punicea** Apostolescu 1959

28 C vue latérale gauche (x100)
Domérien du Quercy (éch. GI. 24).
Fig. 1 Lenticulina matutina (d'ORBIGNY) mg. Marginulinopsis éch GI 11 (x 75)
Fig. 2 Lenticulinaradiata (TERQUEM) mg. Marginulinopsis éch. SMI 18 (x 150)
Fig. 3 Lenticulina inaequistriata (TERQUEM) mg. Planularia éch. GI 20 (x 50)
Fig. 4 Lenticulina preobonensis RUGET mg. Planularia éch SMI 19 (x 50)
Fig. 5 Ichtyolaria muelensis (RUGET-SIGAL) éch. GI 12 (x 100)
Fig. 6 Marginulina gr. prima (d'ORBIGNY) éch. GI 12 (x 75)
Fig. 7 Denticulina arbuscula TERQUEM éch. SMI 18 (x 50)
Fig. 8 Dentulina terquemi (d'ORBIGNY) éch. SMI 18 (x 100)
Fig. 9 Nodosaria claviformis TERQUEM éch. SMI 18 (x 100)
Fig. 10 Marginulina gr. prima (d'ORBIGNY) éch. PJ 1 (x 100)
Fig. 11 Ichtyolaria bicostata (d'ORBIGNY) éch. SMI 18 (x 100)
Fig. 12 Ichtyolaria sulcata (BORNEMANN) éch. SMI 18 (x 150)
Fig. 13 Lenticulinaradiata (TERQUEM) mg. Marginulinopsis éch. SMI 18 (x 150)
Fig. 14 Lenticulina rutenensis mg. Planularia éch SMI 18 (x 150)
Fig. 15 Bolivina liasica (TERQUEM) éch. PJ 3 (x 150)
Fig. 16 Lenticulina hannoverana (FRANKE) mg. Saracenaria éch. TU 13 (x 100)
Fig. 17 Nodosaria sp. éch. GI 16 (x 100)
Fig. 18 Lenticulina sigma TERQUEM mg. Marginulinopsis éch. TU 14 (x 50)
Fig. 19 Marginulina gr. prima (d'ORBIGNY) éch. GI 16 (x 100)
Fig. 20 Lenticulina prima (d'ORBIGNY) mg. Lenticulina éch. SMI 22 (x 50)
Fig. 21 Lenticulina hannoverana (FRANKE) mg. Saracenaria éch. TU 13 (x 100)
Fig. 22 Pseudonodosaria tenuis (BORNEMANN) éch. TU 13 (x 150)
Fig. 23 Lenticulina hannoverana (FRANKE) mg. Saracenaria éch. TU 13 (x 100)
Fig. 24 Lenticulina prima (d'ORBIGNY) mg. Lenticulina éch. PJ 3 (x 100)
Fig. 25 Ichtyolaria nitida (TERQUEM) éch. GI 16 (x 100)
Fig. 1 Ichtyolarianitiida (TERQUEM) éch PJ 3 (x100)
Fig. 2 Ichtyolarianitiida (TERQUEM) éch GI 16 (x100)
Fig. 3 Dentalina primaeva d'ORBIGNY éch. PJ 1 (x 75)
Fig. 4 Lingulina gr. tenera-pupa éch PJ 1 (x 100)
Fig. 5 Bolivina lliasica (TERQUEM) éch. PJ 3 (x 150)
Fig. 6 Lenticulina sp. mg. Marginulinopsis éch. PJ 3 (x 100)
Fig. 7 Lenticulina vetusta d'ORBIGNY mg. Marginulinopsis éch. TU 31 (x 100)
Fig. 8 Lenticulina vetusta d'ORBIGNY mg. Marginulinopsis éch. TU 31 (x 75)
Fig. 9 Lenticulina vetusta d'ORBIGNY mg. Marginulinopsis éch. TU 31 (x 75)
Fig. 10 Lingulina gr. tenera-pupa éch GI 27 (x 150)
Fig. 11 Lenticulina ruthenensis mg. Lenticulina éch. TU 31 (x 100)
Fig. 12 Lenticulina sigma TERQUEM mg. Marginulinopsis éch. TU 14 (x 50)
Fig. 13 Lenticulina gottingensis (BORNEMANN) mg. Lenticulina éch. MGI (x 100)
Fig. 14 Lenticulininaequistriata (TERQUEM) mg. Planularia éch. GI 27 (x 100)
Fig. 15 Lenticulininaequistriata (TERQUEM) mg. Planularia éch. GI 27 (x 100)
Fig. 16 Lenticulininaequistriata (TERQUEM) mg. Planularia éch. GI 16 (x 100)
Fig. 17 Lingulina gr. tenera-pupa éch GI 27 (x 150)
Fig. 18 Lenticulininaequistriata TERQUEM mg. Planularia éch. GI 27 (x 150)
Fig. 19 Lenticulina hannoverana (FRANKE) mg. Saracenaria vue de profil éch. TU 13 (x 150)
Fig. 20 Lenticulina hannoverana (FRANKE) mg. Saracenaria vue de profil éch. TU 13 (x 150)
Fig. 21 Lenticulina lituolides (BORNEMANN) mg. Marginulinopsis éch. TU 34 (x 100)
Fig. 1 Deltoidospora minor éch. PJ 44 (Y33)
Fig. 2 Deltoidospora australis éch. PJ 44 (O42)
Fig. 3 Punctatispores globosus éch PJ 44 (S26)
Fig. 4 Stereisporites cicatrosus éch. PJ 44 (S31)
Fig. 5 Chasmatosporites rimatus Nilson éch. PJ 44 (D40)
Fig. 6 Cyclotriletes oligogramifer éch. PJ 44 (S35)
Fig. 7 Baculatisporites wellmanii éch. PJ 44 (Y38)
Fig. 8 Polypodiisporites ipswichensis (de Jersey 1962) Playford & Detmann 1965 éch. PJ 44 (M34)
Fig. 9 Cyclotriletes margaritatus éch. PJ 44 (R43)
Fig. 10 Baculatisporites comaumensis éch. PJ 44 (Q42)
Fig. 11 Eucomidelites troedssonii éch. PJ 44 (X45)
Fig. 12 Sulcatisporites quadratus éch. PJ 44 (O41)
Fig. 13 Cerebropollenites thierrygatii éch. PJ 44
Fig. 14 Chasmatosporites hians éch PJ 44 (G31)
Fig. 15 Alisporites robustus éch. PJ 44 (H43)
Fig. 16 Nannoceratopsis sp. éch. PJ 44 (D41)
Fig. 17 Valetodinium sp. éch. PJ 77 (U41)
Fig. 18 Mancodinium semitubulatum éch. PJ 77 (O35)
Fig. 19 Fragment de thalle algaire cf. Botryococcus éch. PJ 44 (D50)
Loubressac-Lapoujade :
Membre de Rieuzal (niveau 3)
Plan Est-Ouest, route (Cf. Fig. 20)

Castelnau :
Membre de Rieuzal
La Rouquette : Membre de Rieuza\l

Niveau 3

--- Discontinuité I-C 1

Niveau 2b

Puymule :
Membre de Rieuza\l
Saint-Michel-Loubéjou : Membre de Rieuza (niveau 3)

Membre de Lapoujade
Discontinuité C-M
Membre de Rieuza
Membre des Argilites grises

Magnagues : Membre de Rieuza